메뉴 건너뛰기




Volumn 99, Issue 467, 2004, Pages 700-709

Exact and approximate inferences for nonlinear mixed-effects models with missing covariates

Author keywords

Em algorithm; Gibbs sampling; Importance sampling; Linearization; PX EM algorithm; Rejection sampling

Indexed keywords


EID: 4944229776     PISSN: 01621459     EISSN: None     Source Type: Journal    
DOI: 10.1198/016214504000001006     Document Type: Article
Times cited : (39)

References (27)
  • 1
    • 0033475053 scopus 로고    scopus 로고
    • Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm
    • Booth, J. G., and Hobert, J. P. (1999), "Maximizing Generalized Linear Mixed Model Likelihoods With an Automated Monte Carlo EM Algorithm," Journal of the Royal Statistical Society, Ser. B, 61, 265-285.
    • (1999) Journal of the Royal Statistical Society, Ser. B , vol.61 , pp. 265-285
    • Booth, J.G.1    Hobert, J.P.2
  • 8
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • Gilks, W. R., and Wild, P. (1992), "Adaptive Rejection Sampling for Gibbs Sampling," Applied Statistics, 41, 337-348.
    • (1992) Applied Statistics , vol.41 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 9
    • 0037507563 scopus 로고    scopus 로고
    • Missing responses in generalized linear mixed models when the missing data mechanism is nonignorable
    • Ibrahim, J. G., Chen, M. H., and Lipsitz, S. R. (2001), "Missing Responses in Generalized Linear Mixed Models When the Missing Data Mechanism Is Nonignorable," Biometrika, 88, 551-564.
    • (2001) Biometrika , vol.88 , pp. 551-564
    • Ibrahim, J.G.1    Chen, M.H.2    Lipsitz, S.R.3
  • 10
    • 0033474233 scopus 로고    scopus 로고
    • Missing covariates in generalized linear models when the missing data mechanism is nonignorable
    • Ibrahim, J. G., Lipsitz, S. R., and Chen, M. H. (1999), "Missing Covariates in Generalized Linear Models When the Missing Data Mechanism Is Nonignorable," Journal of the Royal Statistical Society, Ser. B, 61, 173-190.
    • (1999) Journal of the Royal Statistical Society, Ser. B , vol.61 , pp. 173-190
    • Ibrahim, J.G.1    Lipsitz, S.R.2    Chen, M.H.3
  • 11
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N. M., and Ware, J. H. (1982), "Random-Effects Models for Longitudinal Data," Biometrics, 38, 963-974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 12
    • 0025170004 scopus 로고
    • Nonlinear mixed effects models for repeated measures data
    • Lindstrom, M. J., and Bates, D. M. (1990), "Nonlinear Mixed Effects Models for Repeated Measures Data," Biometrics, 46, 673-687.
    • (1990) Biometrics , vol.46 , pp. 673-687
    • Lindstrom, M.J.1    Bates, D.M.2
  • 14
    • 0001508169 scopus 로고    scopus 로고
    • Parameter expansion for EM acceleration: The PX-EM algorithm
    • Liu, C., Rubin, D. B., and Wu, Y. N. (1998), "Parameter Expansion for EM Acceleration: The PX-EM Algorithm," Biometrika, 85, 755-770.
    • (1998) Biometrika , vol.85 , pp. 755-770
    • Liu, C.1    Rubin, D.B.2    Wu, Y.N.3
  • 15
    • 0001044972 scopus 로고
    • Finding the observed information matrix when suing the EM algorithm
    • Louis, T. A. (1982), "Finding the Observed Information Matrix When Suing the EM Algorithm," Journal of the Royal Statistical Society, Ser. B, 44, 226-233.
    • (1982) Journal of the Royal Statistical Society, Ser. B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 16
    • 0031479575 scopus 로고    scopus 로고
    • Maximum likelihood algorithms for generalized linear mixed models
    • McCulloch, C. E. (1997), "Maximum Likelihood Algorithms for Generalized Linear Mixed Models," Journal of the American Statistical Association, 92, 162-170.
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 162-170
    • McCulloch, C.E.1
  • 17
  • 18
    • 0001057239 scopus 로고    scopus 로고
    • Fast EM implementations for mixed-effects models
    • _ (1998), "Fast EM Implementations for Mixed-Effects Models," Journal of the Royal Statistical Society, Ser. B, 60, 559-578.
    • (1998) Journal of the Royal Statistical Society, Ser. B , vol.60 , pp. 559-578
  • 19
    • 84946045727 scopus 로고
    • Approximations to the log-likelihood function in the nonlinear mixed-effects model
    • Pinheiro, J. C., and Bates, D. M. (1995), "Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model," Journal of Computational and Graphical Statistics, 4, 12-35.
    • (1995) Journal of Computational and Graphical Statistics , vol.4 , pp. 12-35
    • Pinheiro, J.C.1    Bates, D.M.2
  • 20
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976), "Inference and Missing Data," Biometrika, 63, 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 21
    • 23044521224 scopus 로고    scopus 로고
    • Fitting mixed-effects models using efficient EM-type algorithms
    • van Dyk, D. A. (2000), "Fitting Mixed-Effects Models Using Efficient EM-Type Algorithms," Journal of Computational and Graphical Statistics, 9, 78-98.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , pp. 78-98
    • Van Dyk, D.A.1
  • 23
    • 0036489058 scopus 로고    scopus 로고
    • Conditional second-order generalized estimating equations for generalized linear and nonlinear mixed-effects models
    • Vonesh, E. F., Wang, H., Nie, L., and Majumdar, D. (2002), "Conditional Second-Order Generalized Estimating Equations for Generalized Linear and Nonlinear Mixed-Effects Models," Journal of the American Statistical Association, 97, 271-283.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 271-283
    • Vonesh, E.F.1    Wang, H.2    Nie, L.3    Majumdar, D.4
  • 24
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithm
    • Wei, G. C., and Tanner, M. A. (1990), "A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithm," Journal of the American Statistical Association, 85, 699-704.
    • (1990) Journal of the American Statistical Association , vol.85 , pp. 699-704
    • Wei, G.C.1    Tanner, M.A.2
  • 25
    • 0001684437 scopus 로고
    • Laplace's approximation for nonlinear mixed models
    • Wolfinger, R. (1993), "Laplace's Approximation for Nonlinear Mixed Models," Biometrika, 80, 791-795.
    • (1993) Biometrika , vol.80 , pp. 791-795
    • Wolfinger, R.1
  • 26
    • 0032967837 scopus 로고    scopus 로고
    • Population HIV-1 dynamics in vivo: Applicable models and inferential tools for virological data from AIDS clinical trials
    • Wu, H., and Ding, A. (1999), "Population HIV-1 Dynamics in vivo: Applicable Models and Inferential Tools for Virological Data From AIDS Clinical Trials," Biometrics, 55, 410-418.
    • (1999) Biometrics , vol.55 , pp. 410-418
    • Wu, H.1    Ding, A.2
  • 27
    • 0035973236 scopus 로고    scopus 로고
    • A multiple imputation method for missing covariates in nonlinear mixed-effect models, with application to HIV dynamics
    • Wu, H., and Wu, L. (2001), "A Multiple Imputation Method for Missing Covariates in Nonlinear Mixed-Effect Models, With Application to HIV Dynamics," Statistics in Medicine, 20, 1755-1769.
    • (2001) Statistics in Medicine , vol.20 , pp. 1755-1769
    • Wu, H.1    Wu, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.