메뉴 건너뛰기




Volumn 19, Issue 6, 2008, Pages 1033-1060

Representation of nonlinear random transformations by non-Gaussian stochastic neural networks

Author keywords

Approximation; Lee Schetzen method; Neural computation; Neural networks; Nonlinear systems; Stochastic processes (SPs)

Indexed keywords

APPLICATION EXAMPLES; APPROXIMATE IDENTITIES; APPROXIMATION; DETERMINISTIC FUNCTIONS; DIFFERENTIAL TRANSFORMATIONS; GAUSSIAN STOCHASTIC PROCESS; INPUT OUTPUTS; LARGE CLASS; LEARNING CAPABILITIES; LEE-SCHETZEN METHOD; LINEAR TRANSFORMATIONS; MEMORY SYSTEMS; NEURAL COMPUTATION; NON-GAUSSIAN; NONLINEAR INPUTS; RANDOM FUNCTIONS; REAL ENVIRONMENTS; STOCHASTIC FUNCTIONS; STOCHASTIC NEURAL NETWORKS; STOCHASTIC PROCESSES (SPS); UNIVERSAL APPROXIMATORS;

EID: 49149095665     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2007.2000055     Document Type: Article
Times cited : (24)

References (35)
  • 1
    • 0024861871 scopus 로고
    • Approximation by superposition of sigmoidal function
    • Dec
    • G. Cybenko, "Approximation by superposition of sigmoidal function," Math. Control Signals Syst., vol. 2, no. 4, pp. 303-314, Dec. 1989.
    • (1989) Math. Control Signals Syst , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 2
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • May
    • K. Funahashi, "On the approximate realization of continuous mappings by neural networks," Neural Netw., vol. 2, no. 3, pp. 183-192, May 1989.
    • (1989) Neural Netw , vol.2 , Issue.3 , pp. 183-192
    • Funahashi, K.1
  • 3
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Jul
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Netw., vol. 2, no. 5, pp. 359-366, Jul. 1989.
    • (1989) Neural Netw , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 4
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • J. Park and I. W. Sandberg, "Universal approximation using radial-basis-function networks," Neural Comput., vol. 3, no. 2, pp. 246-257, 1991.
    • (1991) Neural Comput , vol.3 , Issue.2 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 5
    • 0012099392 scopus 로고
    • Approximation of dynamical systems by continuous-time recurrent approximate identity neural networks
    • Sep
    • M. Conti and C. Turchetti, "Approximation of dynamical systems by continuous-time recurrent approximate identity neural networks," Neural Parallel Sci. Comput., vol. 2, no. 3, pp. 299-322, Sep. 1994.
    • (1994) Neural Parallel Sci. Comput , vol.2 , Issue.3 , pp. 299-322
    • Conti, M.1    Turchetti, C.2
  • 6
    • 0035117089 scopus 로고    scopus 로고
    • Approximation of nonlinear systems with radial basis function neural networks
    • Jan
    • R. J. Schilling, J. J. Carroll, Jr., and A. F. Al-Ajlouni, "Approximation of nonlinear systems with radial basis function neural networks," IEEE Trans. Neural Netw., vol. 12, no. 1, pp. 1-15, Jan. 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , Issue.1 , pp. 1-15
    • Schilling, R.J.1    Carroll Jr., J.J.2    Al-Ajlouni, A.F.3
  • 7
    • 13844255524 scopus 로고    scopus 로고
    • Smooth function approximation using neural networks
    • Jan
    • S. Ferrari and R. F. Stengel, "Smooth function approximation using neural networks," IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 24-38, Jan. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.1 , pp. 24-38
    • Ferrari, S.1    Stengel, R.F.2
  • 8
    • 13844256702 scopus 로고    scopus 로고
    • A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
    • Jan
    • G.-B. Huang, P. Saratchandran, and N. Sundararajan, "A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation," IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 57-67, Jan. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.1 , pp. 57-67
    • Huang, G.-B.1    Saratchandran, P.2    Sundararajan, N.3
  • 9
    • 33646496538 scopus 로고    scopus 로고
    • Function approximation using generalized adalines
    • May
    • J.-M. Wu, Z.-H. Lin, and P.-H. Hsu, "Function approximation using generalized adalines," IEEE Trans. Neural Netw., vol. 17, no. 3, pp. 541-558, May 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.3 , pp. 541-558
    • Wu, J.-M.1    Lin, Z.-H.2    Hsu, P.-H.3
  • 10
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Jul
    • G.-B. Huang, L. Chen, and C.-K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879-892, Jul. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 11
    • 33746915070 scopus 로고    scopus 로고
    • On global-local artificial neural networks for function approximation
    • Jul
    • D. Wedge, D. Ingram, D. McLean, C. Mingham, and Z. Bandar, "On global-local artificial neural networks for function approximation," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 942-952, Jul. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.4 , pp. 942-952
    • Wedge, D.1    Ingram, D.2    McLean, D.3    Mingham, C.4    Bandar, Z.5
  • 12
    • 34547116443 scopus 로고    scopus 로고
    • Active state estimation for nonlinear systems: A neural approximation approach
    • Jul
    • L. Scardovi, M. Baglietto, and T. Parisini, "Active state estimation for nonlinear systems: A neural approximation approach," IEEE Trans. Neural Netw., vol. 18, no. 4, pp. 1172-1184, Jul. 2007.
    • (2007) IEEE Trans. Neural Netw , vol.18 , Issue.4 , pp. 1172-1184
    • Scardovi, L.1    Baglietto, M.2    Parisini, T.3
  • 13
    • 0032209025 scopus 로고    scopus 로고
    • On the approximation of stochastic processes by approximate identity neural networks
    • Nov
    • C. Turchetti, M. Conti, P. Crippa, and S. Orcioni, "On the approximation of stochastic processes by approximate identity neural networks," IEEE Trans. Neural Netw., vol. 9, no. 6, pp. 1069-1085, Nov. 1998.
    • (1998) IEEE Trans. Neural Netw , vol.9 , Issue.6 , pp. 1069-1085
    • Turchetti, C.1    Conti, M.2    Crippa, P.3    Orcioni, S.4
  • 14
    • 0032784635 scopus 로고    scopus 로고
    • Artificial neural networks as approximators of stochastic processes
    • Jun
    • M. R. Belli, M. Conti, P. Crippa, and C. Turchetti, "Artificial neural networks as approximators of stochastic processes," Neural Netw., vol. 12, no. 45, pp. 647-658, Jun. 1999.
    • (1999) Neural Netw , vol.12 , Issue.45 , pp. 647-658
    • Belli, M.R.1    Conti, M.2    Crippa, P.3    Turchetti, C.4
  • 17
    • 0026835133 scopus 로고
    • Information geometry of Boltzmann machines
    • Mar
    • S. Amari, K. Kurata, and H. Nagaoka, "Information geometry of Boltzmann machines," IEEE Trans. Neural Netw., vol. 3, no. 2, pp. 260-271, Mar. 1992.
    • (1992) IEEE Trans. Neural Netw , vol.3 , Issue.2 , pp. 260-271
    • Amari, S.1    Kurata, K.2    Nagaoka, H.3
  • 18
    • 0029403793 scopus 로고
    • Stochastic choice of basis functions in adaptive function approximation and the functional-link net
    • Nov
    • B. Igelnik and Y. H. Pao, "Stochastic choice of basis functions in adaptive function approximation and the functional-link net," IEEE Trans. Neural Netw., vol. 6, no. 6, pp. 1320-1329, Nov. 1995.
    • (1995) IEEE Trans. Neural Netw , vol.6 , Issue.6 , pp. 1320-1329
    • Igelnik, B.1    Pao, Y.H.2
  • 19
    • 0012770021 scopus 로고    scopus 로고
    • A bibliography on nonlinear system identification
    • Mar
    • G. B. Giannakis and E. Serpedin, "A bibliography on nonlinear system identification," Signal Process., vol. 81, no. 3, pp. 533-580, Mar. 2001.
    • (2001) Signal Process , vol.81 , Issue.3 , pp. 533-580
    • Giannakis, G.B.1    Serpedin, E.2
  • 21
    • 8344280338 scopus 로고    scopus 로고
    • Learning of SAINNs from covariance function: Historical learning
    • Oxford, U.K, Sep
    • P. Crippa and C. Turchetti, "Learning of SAINNs from covariance function: Historical learning," in Proc. 7th Int. Conf. Knowl.-Based Intell. Inf. Eng. Syst., Oxford, U.K., Sep. 2003, vol. 1, pp. 177-183.
    • (2003) Proc. 7th Int. Conf. Knowl.-Based Intell. Inf. Eng. Syst , vol.1 , pp. 177-183
    • Crippa, P.1    Turchetti, C.2
  • 23
    • 10444290681 scopus 로고    scopus 로고
    • Diagonal kernel point estimation of n-th order discrete Volterra-Wiener systems
    • Sep
    • M. Pirani, S. Orcioni, and C. Turchetti, "Diagonal kernel point estimation of n-th order discrete Volterra-Wiener systems," EURASIP J. Appl. Signal Process., vol. 2004, no. 12, pp. 1807-1816, Sep. 2004.
    • (2004) EURASIP J. Appl. Signal Process , vol.2004 , Issue.12 , pp. 1807-1816
    • Pirani, M.1    Orcioni, S.2    Turchetti, C.3
  • 25
    • 0035693040 scopus 로고    scopus 로고
    • Speech coding using Fourier-Bessel expansion of speech signals
    • Nov
    • K. Gopalan, "Speech coding using Fourier-Bessel expansion of speech signals," in Proc. 27th Annu. Conf. IEEE Ind. Electron. Soc., Nov. 2001, vol. 3, pp. 2199-2203.
    • (2001) Proc. 27th Annu. Conf. IEEE Ind. Electron. Soc , vol.3 , pp. 2199-2203
    • Gopalan, K.1
  • 28
    • 0005483993 scopus 로고
    • The Volterra representation and the Wiener expansion: Validity and pitfalls
    • Sep
    • G. Palm and T. Poggio, "The Volterra representation and the Wiener expansion: Validity and pitfalls," SIAM J. Appl. Math., vol. 33, no. 2, pp. 195-216, Sep. 1977.
    • (1977) SIAM J. Appl. Math , vol.33 , Issue.2 , pp. 195-216
    • Palm, G.1    Poggio, T.2
  • 29
    • 0026880653 scopus 로고
    • Uniform approximation with doubly-finite Volterra series
    • Jun
    • I. W. Sandberg, "Uniform approximation with doubly-finite Volterra series," IEEE Trans. Signal Process., vol. 40, no. 6, pp. 1438-1442, Jun. 1992.
    • (1992) IEEE Trans. Signal Process , vol.40 , Issue.6 , pp. 1438-1442
    • Sandberg, I.W.1
  • 30
    • 0032047027 scopus 로고    scopus 로고
    • Approximation of myopic systems whose inputs need not be continuous
    • Apr
    • I. W. Sandberg and L. Xu, "Approximation of myopic systems whose inputs need not be continuous," Multidimension. Syst. Signal Process., vol. 9, no. 2, pp. 207-225, Apr. 1998.
    • (1998) Multidimension. Syst. Signal Process , vol.9 , Issue.2 , pp. 207-225
    • Sandberg, I.W.1    Xu, L.2
  • 31
    • 0032656404 scopus 로고    scopus 로고
    • Separation conditions and approximation of continuous-time approximately-finite-memory systems
    • Jul
    • I. W. Sandberg, "Separation conditions and approximation of continuous-time approximately-finite-memory systems," IEEE Trans. Circuits Syst. I, Fundam. Theory App., vol. 46, no. 7, pp. 820-826, Jul. 1999.
    • (1999) IEEE Trans. Circuits Syst. I, Fundam. Theory App , vol.46 , Issue.7 , pp. 820-826
    • Sandberg, I.W.1
  • 32
    • 0016114940 scopus 로고
    • A theory of non-linear system identification
    • Oct
    • M. Schetzen, "A theory of non-linear system identification," Int. J. Control, vol. 20, no. 4, pp. 577-592, Oct. 1974.
    • (1974) Int. J. Control , vol.20 , Issue.4 , pp. 577-592
    • Schetzen, M.1
  • 33
    • 0023476305 scopus 로고
    • The fractal dimension of a test signal: Implications for system identification procedures
    • Dec
    • J. D. Victor, "The fractal dimension of a test signal: Implications for system identification procedures," Biol. Cybern., vol. 57, no. 6, pp. 421-426, Dec. 1987.
    • (1987) Biol. Cybern , vol.57 , Issue.6 , pp. 421-426
    • Victor, J.D.1
  • 34
    • 0028484420 scopus 로고
    • Random and pseudorandom inputs for Volterra filter identification
    • Aug
    • R. D. Nowak and B. D. Van Veen, "Random and pseudorandom inputs for Volterra filter identification," IEEE Trans. Signal Process., vol. 42, no. 8, pp. 2124-2135, Aug. 1994.
    • (1994) IEEE Trans. Signal Process , vol.42 , Issue.8 , pp. 2124-2135
    • Nowak, R.D.1    Van Veen, B.D.2
  • 35
    • 0017971462 scopus 로고
    • Stochastic identification methods for nonlinear systems: An extension of the Wiener theory
    • May
    • G. Palm and T. Poggio, "Stochastic identification methods for nonlinear systems: An extension of the Wiener theory," SIAM J. Appl. Math., vol. 34, no. 3, pp. 524-534, May 1978.
    • (1978) SIAM J. Appl. Math , vol.34 , Issue.3 , pp. 524-534
    • Palm, G.1    Poggio, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.