메뉴 건너뛰기




Volumn 78, Issue 3, 2008, Pages

Two-impurity Anderson model at quantum criticality

Author keywords

[No Author keywords available]

Indexed keywords


EID: 49149086665     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.78.035449     Document Type: Article
Times cited : (6)

References (27)
  • 6
    • 0025463409 scopus 로고
    • SSCOA4 0038-1098 10.1016/0038-1098(90)90346-D
    • O. Sakai, Y. Shimizu, and T. Kasuya, Solid State Commun. SSCOA4 0038-1098 10.1016/0038-1098(90)90346-D 75, 81 (1990).
    • (1990) Solid State Commun. , vol.75 , pp. 81
    • Sakai, O.1    Shimizu, Y.2    Kasuya, T.3
  • 7
    • 33749422032 scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.52.9528
    • I. Affleck, A. W. W. Ludwig, and B. A. Jones, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.52.9528 52, 9528 (1995).
    • (1995) Phys. Rev. B , vol.52 , pp. 9528
    • Affleck, I.1    Ludwig, A.W.W.2    Jones, B.A.3
  • 10
    • 0142223312 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.90.136602
    • Y. Oreg and D. Goldhaber-Gordon, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.90.136602 90, 136602 (2003).
    • (2003) Phys. Rev. Lett. , vol.90 , pp. 136602
    • Oreg, Y.1    Goldhaber-Gordon, D.2
  • 11
    • 18244408237 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.94.086805
    • M. G. Vavilov and L. I. Glazman, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.086805 94, 086805 (2005)
    • (2005) Phys. Rev. Lett. , vol.94 , pp. 086805
    • Vavilov, M.G.1    Glazman, L.I.2
  • 12
    • 18144418587 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.94.086602
    • P. Simon, R. Lopez, and Y. Oreg, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.086602 94, 086602 (2005).
    • (2005) Phys. Rev. Lett. , vol.94 , pp. 086602
    • Simon, P.1    Lopez, R.2    Oreg, Y.3
  • 13
    • 0011542920 scopus 로고
    • NUPBBO 0550-3213 10.1016/0550-3213(91)90419-X
    • I. Affleck and A. W. W. Ludwig, Nucl. Phys. B NUPBBO 0550-3213 10.1016/0550-3213(91)90419-X 360, 641 (1991)
    • (1991) Nucl. Phys. B , vol.360 , pp. 641
    • Affleck, I.1    Ludwig, A.W.W.2
  • 14
    • 33749031954 scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.48.7297
    • I. Affleck and A. W. W. Ludwig, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.48.7297 48, 7297 (1993).
    • (1993) Phys. Rev. B , vol.48 , pp. 7297
    • Affleck, I.1    Ludwig, A.W.W.2
  • 15
    • 0000027084 scopus 로고
    • For a review, see APPOAK 0001-673X
    • For a review, see I. Affleck, Acta Phys. Pol. APPOAK 0001-673X 26, 1869 (1995).
    • (1995) Acta Phys. Pol. , vol.26 , pp. 1869
    • Affleck, I.1
  • 17
    • 49149122483 scopus 로고    scopus 로고
    • Due to the special form (point-like hybridization and coupling of the subsystems via spins only) of the interactions in Eq. 3, we can use the trivial redefinitions c1α (x) → c1α (x- Ri) to formally obtain x=0 as the impurity position in both of the leads.
    • Due to the special form (point-like hybridization and coupling of the subsystems via spins only) of the interactions in Eq. 3, we can use the trivial redefinitions c1α (x) → c1α (x- Ri) to formally obtain x=0 as the impurity position in both of the leads.
  • 18
    • 49149125641 scopus 로고    scopus 로고
    • The statement that the boundary condition representing the impurity-electron interaction in the TIKM is obtained by fusion with the Ising field σ is strictly speaking a hypothesis within BCFT, and as such must be tested against independent results. This was done in Ref. where it was shown that fusion with σ produces a finite-size spectrum in excellent agreement with numerical results for the TIKM.
    • The statement that the boundary condition representing the impurity-electron interaction in the TIKM is obtained by fusion with the Ising field σ is strictly speaking a hypothesis within BCFT, and as such must be tested against independent results. This was done in Ref. where it was shown that fusion with σ produces a finite-size spectrum in excellent agreement with numerical results for the TIKM.
  • 19
    • 49149122979 scopus 로고    scopus 로고
    • The boundary scaling dimensions Δn in the semi-infinite plane are connected to energy levels in a strip with the same boundary condition at the two edges. We are therefore effectively considering a finite-size energy spectrum with two quantum impurities present, one at each edge of the strip. Formally, this can be taken care of by performing fusion twice with σ× = σ (double fusion).
    • The boundary scaling dimensions Δn in the semi-infinite plane are connected to energy levels in a strip with the same boundary condition at the two edges. We are therefore effectively considering a finite-size energy spectrum with two quantum impurities present, one at each edge of the strip. Formally, this can be taken care of by performing fusion twice with σ× = σ (double fusion).
  • 20
    • 11244322363 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.68.075112
    • H. Johannesson, N. Andrei, and C. J. Bolech, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.68.075112 68, 075112 (2003).
    • (2003) Phys. Rev. B , vol.68 , pp. 075112
    • Johannesson, H.1    Andrei, N.2    Bolech, C.J.3
  • 21
    • 49149099463 scopus 로고    scopus 로고
    • The reason that L-1 does not contribute to the finite-temperature properties lies in the symmetry of the finite temperature geometry. The potential contributions of L-1 to the partition function are of the form 0β dτ L-1 (τ,0)... T, where the three dots in the correlator represent any other set of operators not depending on τ and the subscript T means that the correlator is evaluated in the finite-temperature geometry, i.e. a cylinder where τ=0 and τ=β are identified. Using L-1 (τ) = τ (τ) such terms are seen to vanish 0β dτ τ (τ,0)... = (β)...- (0)... = 0.
    • The reason that L-1 does not contribute to the finite-temperature properties lies in the symmetry of the finite temperature geometry. The potential contributions of L-1 to the partition function are of the form 0β dτ L-1 (τ,0)... T, where the three dots in the correlator represent any other set of operators not depending on τ and the subscript T means that the correlator is evaluated in the finite-temperature geometry, i.e. a cylinder where τ=0 and τ=β are identified. Using L-1 (τ) = τ (τ) such terms are seen to vanish 0β dτ τ (τ,0)... = (β)... - (0)... =0.
  • 22
    • 49149097598 scopus 로고    scopus 로고
    • For an example of how the scaling fields in a BCFT formulation of a quantum impurity model depend on the microscopic parameters of the model (specifically the impurity valences)-as determined by an exact Bethe Ansatz solution-see Ref..
    • For an example of how the scaling fields in a BCFT formulation of a quantum impurity model depend on the microscopic parameters of the model (specifically the impurity valences)-as determined by an exact Bethe Ansatz solution-see Ref..
  • 23
    • 0018998220 scopus 로고
    • JOPQAG 0302-0738 10.1051/jphys:01980004103019300
    • P. Nozières and A. Blandin, J. Phys. (Paris) JOPQAG 0302-0738 10.1051/jphys:01980004103019300 41, 193 (1980).
    • (1980) J. Phys. (Paris) , vol.41 , pp. 193
    • Nozières, P.1    Blandin, A.2
  • 24
    • 0000719127 scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.40.324
    • B. A. Jones and C. M. Varma, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.40.324 40, 324 (1989).
    • (1989) Phys. Rev. B , vol.40 , pp. 324
    • Jones, B.A.1    Varma, C.M.2
  • 25
    • 36149032280 scopus 로고
    • JPHAC5 0305-4470 10.1088/0305-4470/27/16/007
    • I. Affleck and A. W. W. Ludwig, J. Phys. A JPHAC5 0305-4470 10.1088/0305-4470/27/16/007 27, 5375 (1994).
    • (1994) J. Phys. a , vol.27 , pp. 5375
    • Affleck, I.1    Ludwig, A.W.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.