메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages 1399-1435

Online learning of complex prediction problems using simultaneous projections

Author keywords

Mistake bounds; Online learning; Parallel computation; Structured prediction

Indexed keywords

CHLORINE COMPOUNDS; FORECASTING; INTERNET; SOLUTIONS; TEXT PROCESSING;

EID: 48849088696     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (3)

References (24)
  • 2
    • 49949144765 scopus 로고
    • The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
    • L. M. Bregman. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 7:200-217, 1967.
    • (1967) USSR Computational Mathematics and Mathematical Physics , vol.7 , pp. 200-217
    • Bregman, L.M.1
  • 4
    • 0036568032 scopus 로고    scopus 로고
    • On the learnability and design of output codes for multiclass problems
    • K. Crammer and Y. Singer. On the learnability and design of output codes for multiclass problems. Machine Learning, 47, 2002.
    • (2002) Machine Learning , vol.47
    • Crammer, K.1    Singer, Y.2
  • 5
    • 0141496132 scopus 로고    scopus 로고
    • Ultraconservative online algorithms for multiclass problems
    • K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems. Journal of Machine Learning Research, 3:951-991, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 951-991
    • Crammer, K.1    Singer, Y.2
  • 7
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • January
    • T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 2:263-286, January 1995.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 9
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • T. Hastie and R. Tibshirani. Classification by pairwise coupling. The Annals of Statistics, 26(1):451-471, 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.1 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 10
    • 48849103892 scopus 로고    scopus 로고
    • C. Hildreth. A quadratic programming procedure. Naval Research Logistics Quarterly, 4:79-85, 1957. Erratum, ibidem, p.361.
    • C. Hildreth. A quadratic programming procedure. Naval Research Logistics Quarterly, 4:79-85, 1957. Erratum, ibidem, p.361.
  • 11
    • 0035575628 scopus 로고    scopus 로고
    • Relative loss bounds for multidimensional regression problems
    • July
    • J. Kivinen and M. Warmuth. Relative loss bounds for multidimensional regression problems. Journal of Machine Learning, 45(3):301-329, July 2001.
    • (2001) Journal of Machine Learning , vol.45 , Issue.3 , pp. 301-329
    • Kivinen, J.1    Warmuth, M.2
  • 12
    • 0008815681 scopus 로고    scopus 로고
    • Exponentiated gradient versus gradient descent for linear predictors
    • January
    • J. Kivinen and M. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132(1):1-64, January 1997.
    • (1997) Information and Computation , vol.132 , Issue.1 , pp. 1-64
    • Kivinen, J.1    Warmuth, M.2
  • 13
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285-318, 1988.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 15
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of Support Vector Machines using sequential minimal optimization
    • B. Schölkopf, C. Burges, and A. Smola, editors, MIT Press
    • J. C. Platt. Fast training of Support Vector Machines using sequential minimal optimization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning. MIT Press, 1998.
    • (1998) Advances in Kernel Methods - Support Vector Learning
    • Platt, J.C.1
  • 16
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Reprinted in Neurocomputing MIT Press, 1988
    • F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65:386-407, 1958. (Reprinted in Neurocomputing (MIT Press, 1988).).
    • (1958) Psychological Review , vol.65 , pp. 386-407
    • Rosenblatt, F.1
  • 17
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3):1-40, 1999.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 1-40
    • Schapire, R.E.1    Singer, Y.2
  • 18
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • R.E. Schapire and Y. Singer. BoosTexter: A boosting-based system for text categorization. Machine Learning, 32(2/3), 2000.
    • (2000) Machine Learning , vol.32 , Issue.2-3
    • Schapire, R.E.1    Singer, Y.2
  • 20
    • 33745800276 scopus 로고    scopus 로고
    • S. Shalev-Shwartz and Y. Singer. Efficient learning of label ranking by soft projections onto polyhedra. Journal of Machine Learning Research, 7 (July):1567-1599, 2006b.
    • S. Shalev-Shwartz and Y. Singer. Efficient learning of label ranking by soft projections onto polyhedra. Journal of Machine Learning Research, 7 (July):1567-1599, 2006b.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.