메뉴 건너뛰기




Volumn 21, Issue 6, 2008, Pages 507-513

Index-BitTableFI: An improved algorithm for mining frequent itemsets

Author keywords

Association rule; BitTable; Data mining; Frequent itemset; Index array; Subsume index

Indexed keywords

ALGORITHMS; ASSOCIATIVE PROCESSING; BOOLEAN FUNCTIONS; DATA MINING; DECISION SUPPORT SYSTEMS; INFORMATION MANAGEMENT; KNOWLEDGE MANAGEMENT; SEARCH ENGINES;

EID: 48649099292     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2008.03.011     Document Type: Article
Times cited : (122)

References (25)
  • 1
    • 0027621699 scopus 로고    scopus 로고
    • R. Agrawal, T. Imielinski, A. Swami, Mining associations between sets of items in massive databases, in: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data (SIGMOD'93), Washington, DC, 1993, pp. 207-216.
    • R. Agrawal, T. Imielinski, A. Swami, Mining associations between sets of items in massive databases, in: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data (SIGMOD'93), Washington, DC, 1993, pp. 207-216.
  • 2
    • 48649108373 scopus 로고    scopus 로고
    • R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large databases, in: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB'94), Chile, 1994, pp. 487-499.
    • R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large databases, in: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB'94), Chile, 1994, pp. 487-499.
  • 3
    • 0029212693 scopus 로고    scopus 로고
    • R. Agrawal, R. Srikant, Mining sequential patterns, in: Proceedings of the Eleventh International Conference on Data Engineering (ICDE'95), Taipei, 1995, pp. 3-14.
    • R. Agrawal, R. Srikant, Mining sequential patterns, in: Proceedings of the Eleventh International Conference on Data Engineering (ICDE'95), Taipei, 1995, pp. 3-14.
  • 5
    • 0037364958 scopus 로고    scopus 로고
    • Complete mining of frequent patterns from graphs: mining graph data
    • Inokuchi A., Washio T., and Motoda H. Complete mining of frequent patterns from graphs: mining graph data. Machine Learning 50 3 (2003) 321-354
    • (2003) Machine Learning , vol.50 , Issue.3 , pp. 321-354
    • Inokuchi, A.1    Washio, T.2    Motoda, H.3
  • 6
    • 85198669876 scopus 로고    scopus 로고
    • J.S. Park, M.S. Chen, P.S. Yu, An efficient hash-based algorithm for mining association rules, in: Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data (SIGMOD'95), San Jose, California, 1995, pp. 175-186.
    • J.S. Park, M.S. Chen, P.S. Yu, An efficient hash-based algorithm for mining association rules, in: Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data (SIGMOD'95), San Jose, California, 1995, pp. 175-186.
  • 7
    • 48649099787 scopus 로고    scopus 로고
    • A. Savasere, E. Omiecinski, S.B. Navathe, An efficient algorithm for mining association rules in large databases, in: Proceedings of 21th International Conference on Very Large Data Bases (VLDB'95), Zurich, 1995, pp. 432-444.
    • A. Savasere, E. Omiecinski, S.B. Navathe, An efficient algorithm for mining association rules in large databases, in: Proceedings of 21th International Conference on Very Large Data Bases (VLDB'95), Zurich, 1995, pp. 432-444.
  • 8
    • 48649102470 scopus 로고    scopus 로고
    • H. Toivonen, Sampling large databases for association rules, in: Proceedings of 22th International Conference on Very Large Data Bases (VLDB'96), Bombay, India, 1996, pp. 134-145.
    • H. Toivonen, Sampling large databases for association rules, in: Proceedings of 22th International Conference on Very Large Data Bases (VLDB'96), Bombay, India, 1996, pp. 134-145.
  • 9
    • 0031162961 scopus 로고    scopus 로고
    • S. Brin, R. Motwani, J.D. Ullman, S. Tsur, Dynamic itemset counting and implication rules for market basket data, in: Proceedings ACM SIGMOD International Conference on Management of Data (SIGMOD'97), Tucson, Arizona, 1997, pp. 255-264.
    • S. Brin, R. Motwani, J.D. Ullman, S. Tsur, Dynamic itemset counting and implication rules for market basket data, in: Proceedings ACM SIGMOD International Conference on Management of Data (SIGMOD'97), Tucson, Arizona, 1997, pp. 255-264.
  • 10
    • 0037338989 scopus 로고    scopus 로고
    • Continuous and incremental data mining association rules using frame metadata model
    • Fong J., Wong H.K., and Huang S.M. Continuous and incremental data mining association rules using frame metadata model. Knowledge Based Systems 16 2 (2003) 91-100
    • (2003) Knowledge Based Systems , vol.16 , Issue.2 , pp. 91-100
    • Fong, J.1    Wong, H.K.2    Huang, S.M.3
  • 11
    • 0032094477 scopus 로고    scopus 로고
    • S. Sarawagi, S. Thomas, R. Agrawal, Integrating mining with relational database systems: alternatives and implications, in: Proceedings ACM SIGMOD International Conference on Management of Data (SIGMOD'98), Seattle, Washington, 1998, pp. 343-354.
    • S. Sarawagi, S. Thomas, R. Agrawal, Integrating mining with relational database systems: alternatives and implications, in: Proceedings ACM SIGMOD International Conference on Management of Data (SIGMOD'98), Seattle, Washington, 1998, pp. 343-354.
  • 12
    • 84958759493 scopus 로고    scopus 로고
    • S. Orlando, P. Palmerini, R. Perego, Enhancing the Apriori algorithm for frequent set counting, in: Proceedings of Third International Conference on Data Warehousing and Knowledge Discovery (DaWak'01), Munich, 2001, pp. 71-82.
    • S. Orlando, P. Palmerini, R. Perego, Enhancing the Apriori algorithm for frequent set counting, in: Proceedings of Third International Conference on Data Warehousing and Knowledge Discovery (DaWak'01), Munich, 2001, pp. 71-82.
  • 13
    • 15544363947 scopus 로고    scopus 로고
    • CBAR: an efficient method for mining association rules
    • Tsay Y.J., and Chiang J.Y. CBAR: an efficient method for mining association rules. Knowledge Based Systems 18 2-3 (2005) 99-105
    • (2005) Knowledge Based Systems , vol.18 , Issue.2-3 , pp. 99-105
    • Tsay, Y.J.1    Chiang, J.Y.2
  • 14
    • 0039253846 scopus 로고    scopus 로고
    • J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation, in: Proceedings of the 2000 ACM-SIGMOD International Conference on Management of Data (SIGMOD'00), Dallas, Texas, 2000, pp. 1-12.
    • J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation, in: Proceedings of the 2000 ACM-SIGMOD International Conference on Management of Data (SIGMOD'00), Dallas, Texas, 2000, pp. 1-12.
  • 15
    • 78149320187 scopus 로고    scopus 로고
    • J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, D. Yang, H-Mine: hyper-structure mining of frequent patterns in large databases, in: Proceedings of the 2001 IEEE International Conference on Data Mining (ICDM'01), San Jose, CA, 2001, pp. 441-448.
    • J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, D. Yang, H-Mine: hyper-structure mining of frequent patterns in large databases, in: Proceedings of the 2001 IEEE International Conference on Data Mining (ICDM'01), San Jose, CA, 2001, pp. 441-448.
  • 16
    • 33751160855 scopus 로고    scopus 로고
    • Efficient mining of frequent patterns using ascending frequency ordered prefix-tree
    • Liu G., Lu H., Lou W., Xu Y., and Yu J.X. Efficient mining of frequent patterns using ascending frequency ordered prefix-tree. Data Mining Knowledge Discovery 9 3 (2004) 249-274
    • (2004) Data Mining Knowledge Discovery , vol.9 , Issue.3 , pp. 249-274
    • Liu, G.1    Lu, H.2    Lou, W.3    Xu, Y.4    Yu, J.X.5
  • 17
  • 19
    • 6344277753 scopus 로고    scopus 로고
    • M.J. Zaki, K. Gouda, Fast vertical mining using diffsets, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, 2003, pp. 326-335.
    • M.J. Zaki, K. Gouda, Fast vertical mining using diffsets, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, 2003, pp. 326-335.
  • 20
    • 34047267825 scopus 로고    scopus 로고
    • BitTableFI: an efficient mining frequent itemsets algorithm
    • Dong J., and Han M. BitTableFI: an efficient mining frequent itemsets algorithm. Knowledge Based Systems 20 4 (2007) 329-335
    • (2007) Knowledge Based Systems , vol.20 , Issue.4 , pp. 329-335
    • Dong, J.1    Han, M.2
  • 21
    • 48649096667 scopus 로고    scopus 로고
    • B. Goethals, M.J. Zaki, Advances in frequent itemset mining implementations introduction to FIMI03, in: Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining Implementations (FIMI'03), 2003.
    • B. Goethals, M.J. Zaki, Advances in frequent itemset mining implementations introduction to FIMI03, in: Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining Implementations (FIMI'03), 2003.
  • 22
    • 33846239457 scopus 로고    scopus 로고
    • Mining lossless closed frequent patterns with weight constraints
    • Yun U. Mining lossless closed frequent patterns with weight constraints. Knowledge Based Systems 20 1 (2007) 86-97
    • (2007) Knowledge Based Systems , vol.20 , Issue.1 , pp. 86-97
    • Yun, U.1
  • 24
    • 33745443433 scopus 로고    scopus 로고
    • J. Liu, S. Paulsen, X. Sun, W. Wang, A.B. Nobel, J. Prins, Mining approximate frequent itemsets in the presence of noise: algorithm and analysis, in: Proceedings of 2006 SIAM International Conference on Data Mining (SDM'06), Bethesda, MD, 2006, pp. 405-416.
    • J. Liu, S. Paulsen, X. Sun, W. Wang, A.B. Nobel, J. Prins, Mining approximate frequent itemsets in the presence of noise: algorithm and analysis, in: Proceedings of 2006 SIAM International Conference on Data Mining (SDM'06), Bethesda, MD, 2006, pp. 405-416.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.