메뉴 건너뛰기




Volumn , Issue , 2007, Pages 221-227

Summarizing evolving data streams using dynamic prefix trees

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; DATA STRUCTURES; DECISION SUPPORT SYSTEMS; FILE ORGANIZATION; INFORMATION MANAGEMENT; RIVERS; SEARCH ENGINES; TERMINOLOGY;

EID: 48349098673     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WI.2007.97     Document Type: Conference Paper
Times cited : (3)

References (14)
  • 2
    • 33749242628 scopus 로고    scopus 로고
    • Dynamic topic models
    • ACM Press
    • D. M. Blei and J. D. Lafferty. Dynamic topic models. In ICML '06, pages 113-120. ACM Press, 2006.
    • (2006) ICML '06 , pp. 113-120
    • Blei, D.M.1    Lafferty, J.D.2
  • 3
    • 84879079572 scopus 로고    scopus 로고
    • Incremental mining of frequent patterns without candidate generation or support constraint
    • W. Cheung and O. R. Zaïane. Incremental mining of frequent patterns without candidate generation or support constraint. In IDEAS, pages 111-116, 2003.
    • (2003) IDEAS , pp. 111-116
    • Cheung, W.1    Zaïane, O.R.2
  • 4
    • 19544377965 scopus 로고    scopus 로고
    • Moment: Maintaining closed frequent itemsets over a stream sliding window
    • Y. Chi, H. Wang, Philip S. Yu, and Richard R. Muntz. Moment: Maintaining closed frequent itemsets over a stream sliding window. In ICDM '04, pages 59-66, 2004.
    • (2004) ICDM '04 , pp. 59-66
    • Chi, Y.1    Wang, H.2    Yu, P.S.3    Muntz, R.R.4
  • 7
    • 1842788824 scopus 로고    scopus 로고
    • Finding scientific topics
    • April
    • T. L. Griffiths and M. Steyvers. Finding scientific topics. PNAS, 101 Suppl 1:5228-5235, April 2004.
    • (2004) PNAS , vol.101 , Issue.SUPPL. 1 , pp. 5228-5235
    • Griffiths, T.L.1    Steyvers, M.2
  • 8
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: A frequent-pattern tree approach
    • J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8(1):53-87, 2004.
    • (2004) Data Mining and Knowledge Discovery , vol.8 , Issue.1 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3    Mao, R.4
  • 9
    • 0035789299 scopus 로고    scopus 로고
    • Mining time-changing data streams
    • G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In KDD '01, pages 97-106, 2001.
    • (2001) KDD '01 , pp. 97-106
    • Hulten, G.1    Spencer, L.2    Domingos, P.3
  • 10
    • 85123650840 scopus 로고    scopus 로고
    • Detecting change in data streams
    • D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data streams. In VLDB, pages 180-191, 2004.
    • (2004) VLDB , pp. 180-191
    • Kifer, D.1    Ben-David, S.2    Gehrke, J.3
  • 11
    • 35048834898 scopus 로고    scopus 로고
    • An efficient approach for maintaining association rules based on adjusting FP-Tree structures
    • J. Koh and S. Shieh. An efficient approach for maintaining association rules based on adjusting FP-Tree structures. In DASFAA, pages 417-424, 2004.
    • (2004) DASFAA , pp. 417-424
    • Koh, J.1    Shieh, S.2
  • 12
    • 84878048755 scopus 로고    scopus 로고
    • DSTree: A tree structure for the mining of frequent sets from data streams
    • C. K. Leung and Q. I. Khan. DSTree: A tree structure for the mining of frequent sets from data streams. In ICDM '06, pages 928-932, 2006.
    • (2006) ICDM '06 , pp. 928-932
    • Leung, C.K.1    Khan, Q.I.2
  • 14
    • 31444440239 scopus 로고    scopus 로고
    • The 8 requirements of real-time stream processing
    • M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8 requirements of real-time stream processing. ACM SIGMOD Record, 34(4):42-47, 2005.
    • (2005) ACM SIGMOD Record , vol.34 , Issue.4 , pp. 42-47
    • Stonebraker, M.1    Çetintemel, U.2    Zdonik, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.