메뉴 건너뛰기




Volumn 3, Issue 1, 2007, Pages 13-20

Fuzzy inference modeling based on fuzzy singleton-type reasoning

Author keywords

Fuzzy rule table; Fuzzy singleton type reasoning; Matching approach; Neuro fuzzy learning algorithm; Triangular type member ship function

Indexed keywords


EID: 48249112805     PISSN: 13494198     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (25)

References (26)
  • 1
    • 0030283350 scopus 로고    scopus 로고
    • Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction
    • Cho, K. B. and B. H. Wang, Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction, Fuzzy Sets and Systems, vol.83, no.3, pp.325-339, 1996.
    • (1996) Fuzzy Sets and Systems , vol.83 , Issue.3 , pp. 325-339
    • Cho, K.B.1    Wang, B.H.2
  • 2
    • 0026923902 scopus 로고
    • On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm
    • Horikawa, S., T. Furuhashi and Y. Uchikawa, On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm, IEEE Transactions on Neural Networks, vol.3, no.5, pp.801-806, 1992.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.5 , pp. 801-806
    • Horikawa, S.1    Furuhashi, T.2    Uchikawa, Y.3
  • 3
    • 63649161543 scopus 로고    scopus 로고
    • Ichihashi, H., Iterative fuzzy modeling and a hierarchical network, Proc. of the 4th International Fuzzy Systems Association World Congress, Brussels, Belgium, Eng., pp.49-52, 1991.
    • Ichihashi, H., Iterative fuzzy modeling and a hierarchical network, Proc. of the 4th International Fuzzy Systems Association World Congress, Brussels, Belgium, vol.Eng., pp.49-52, 1991.
  • 4
    • 38249001004 scopus 로고
    • A neuro-fuzzy approach to data analysis of pairwise comparisons
    • Ichihashi, H. and I. B. Tüksen, A neuro-fuzzy approach to data analysis of pairwise comparisons, International Journal of Approximate Reasoning, vol.9, no.3, pp.227-248, 1993.
    • (1993) International Journal of Approximate Reasoning , vol.9 , Issue.3 , pp. 227-248
    • Ichihashi, H.1    Tüksen, I.B.2
  • 5
    • 0025839504 scopus 로고
    • A Gaussian potential function network with hierarchically self-organization learning
    • Lee, S. and R. M. Kil, A Gaussian potential function network with hierarchically self-organization learning, IEEE Transactions on Neural Networks, vol.4, no.l, pp.207-224, 1991.
    • (1991) IEEE Transactions on Neural Networks , vol.4 , Issue.L , pp. 207-224
    • Lee, S.1    Kil, R.M.2
  • 6
    • 0039805995 scopus 로고
    • An automobile tracking control with a fuzzy logic
    • Osaka, Japan, pp, in Japanese
    • Maeda, M. and S. Murakami, An automobile tracking control with a fuzzy logic, Proc. of the 3rd Fuzzy System Symposium, Osaka, Japan, pp.61-66, 1987 (in Japanese).
    • (1987) Proc. of the 3rd Fuzzy System Symposium , pp. 61-66
    • Maeda, M.1    Murakami, S.2
  • 7
    • 63649116826 scopus 로고    scopus 로고
    • Maeda, Y. and Q. Li, Parallel genetic algorithm with adaptive genetic parameters tuned by fuzzy reasoning, International Journal of Innovative Computing, Information & Control, l, no.l, pp.95-107, 2005.
    • Maeda, Y. and Q. Li, Parallel genetic algorithm with adaptive genetic parameters tuned by fuzzy reasoning, International Journal of Innovative Computing, Information & Control, vol.l, no.l, pp.95-107, 2005.
  • 8
    • 0037649241 scopus 로고
    • Improvement of fuzzy controls (VI)
    • Hiroshima, Japan, pp, in Japanese
    • Mizumoto, M., Improvement of fuzzy controls (VI), Proc. of the 8th Fuzzy System Symposium, Hiroshima, Japan, pp.529-532, 1992 (in Japanese).
    • (1992) Proc. of the 8th Fuzzy System Symposium , pp. 529-532
    • Mizumoto, M.1
  • 10
    • 63649094358 scopus 로고    scopus 로고
    • Nomura, H., I. Hayashi and N. Wakami, A self-tuning method of fuzzy control by descent method, Proc. of the 4th International Fuzzy Systems Association World Congress, Brussels, Belgium, Eng., pp.155-158, 1991.
    • Nomura, H., I. Hayashi and N. Wakami, A self-tuning method of fuzzy control by descent method, Proc. of the 4th International Fuzzy Systems Association World Congress, Brussels, Belgium, vol.Eng., pp.155-158, 1991.
  • 13
    • 0030377564 scopus 로고    scopus 로고
    • Shi, Y. and M. Mizumoto, N. Yubazaki and M. Otani, A learning algorithm for tuning fuzzy rules based on the gradient descent method, Proc. of the 5th IEEE International Conference on Fuzzy Systems, New Orleans, USA, l, pp.55-61, 1996.
    • Shi, Y. and M. Mizumoto, N. Yubazaki and M. Otani, A learning algorithm for tuning fuzzy rules based on the gradient descent method, Proc. of the 5th IEEE International Conference on Fuzzy Systems, New Orleans, USA, vol.l, pp.55-61, 1996.
  • 14
    • 0031640963 scopus 로고    scopus 로고
    • An improvement of neuro-fuzzy learning algorithm for tuning fuzzy rules based on fuzzy clustering method
    • Anchorage, USA, pp
    • Shi, Y. and M. Mizumoto, An improvement of neuro-fuzzy learning algorithm for tuning fuzzy rules based on fuzzy clustering method, Proc. of the 7th IEEE International Conference on Fuzzy Systems, Anchorage, USA, pp.991-996, 1998.
    • (1998) Proc. of the 7th IEEE International Conference on Fuzzy Systems , pp. 991-996
    • Shi, Y.1    Mizumoto, M.2
  • 16
    • 0003056928 scopus 로고    scopus 로고
    • Some considerations on conventional neuro-fuzzy learning algorithms by gradient descent method
    • Shi, Y. and M. Mizumoto, Some considerations on conventional neuro-fuzzy learning algorithms by gradient descent method, Fuzzy Sets and Systems, vol.112, no.l, pp.51-63, 2000.
    • (2000) Fuzzy Sets and Systems , vol.112 , Issue.L , pp. 51-63
    • Shi, Y.1    Mizumoto, M.2
  • 17
    • 0003161979 scopus 로고    scopus 로고
    • A new approach of neuro-fuzzy learning algorithm for tuning fuzzy rules
    • Shi, Y. and M. Mizumoto, A new approach of neuro-fuzzy learning algorithm for tuning fuzzy rules, Fuzzy Sets and Systems, vol.112, no.l, pp.99-116, 2000.
    • (2000) Fuzzy Sets and Systems , vol.112 , Issue.L , pp. 99-116
    • Shi, Y.1    Mizumoto, M.2
  • 18
    • 0034154925 scopus 로고    scopus 로고
    • An improvement of neuro-fuzzy learning algorithm for tuning fuzzy rules
    • Shi, Y. and M. Mizumoto, An improvement of neuro-fuzzy learning algorithm for tuning fuzzy rules, Fuzzy Sets and Systems, vol.118, no.2, pp.339-350, 2001.
    • (2001) Fuzzy Sets and Systems , vol.118 , Issue.2 , pp. 339-350
    • Shi, Y.1    Mizumoto, M.2
  • 24
    • 63649111355 scopus 로고    scopus 로고
    • Wang, T. and T. Shaocheng, Adaptive fuzzy output feedback control for SISO nonlinear systems, International Journal of Innovative Computing, Information & Control, 2, no.l,pp.51-60, 2006.
    • Wang, T. and T. Shaocheng, Adaptive fuzzy output feedback control for SISO nonlinear systems, International Journal of Innovative Computing, Information & Control, vol.2, no.l,pp.51-60, 2006.
  • 25
    • 84974755191 scopus 로고
    • Generation of fuzzy rules by mountain clustering
    • Yager, R. R. and D. P. Filev, Generation of fuzzy rules by mountain clustering, Journal of Intelligent and Fuzzy Systems, vol.2, no.3, pp.209-219, 1994.
    • (1994) Journal of Intelligent and Fuzzy Systems , vol.2 , Issue.3 , pp. 209-219
    • Yager, R.R.1    Filev, D.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.