메뉴 건너뛰기




Volumn 118, Issue 2, 2001, Pages 339-350

An improvement of neuro-fuzzy learning algorithm for tuning fuzzy rules

Author keywords

Fuzzy c means clustering algorithm; Fuzzy rule generation; Neuro fuzzy learning algorithm

Indexed keywords

DATA REDUCTION; LEARNING ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 0034154925     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0165-0114(98)00440-0     Document Type: Article
Times cited : (37)

References (25)
  • 3
    • 0030283350 scopus 로고    scopus 로고
    • Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction
    • Cho K.B., Wang B.H. Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction. Fuzzy Sets and Systems. 83(3):1996;325-339.
    • (1996) Fuzzy Sets and Systems , vol.83 , Issue.3 , pp. 325-339
    • Cho, K.B.1    Wang, B.H.2
  • 4
    • 0038155447 scopus 로고
    • Acquisition of inference rules by neural network driven fuzzy reasoning
    • (in Japanese)
    • I. Hayashi, H. Nomura, N. Wakami, Acquisition of inference rules by neural network driven fuzzy reasoning, J. Japan Soc. Fuzzy Theory Systems 2 (4) (1990) 585-597 (in Japanese).
    • (1990) J. Japan Soc. Fuzzy Theory Systems , vol.2 , Issue.4 , pp. 585-597
    • Hayashi, I.1    Nomura, H.2    Wakami, N.3
  • 5
    • 0026923902 scopus 로고
    • On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm
    • Horikawa S., Furuhashi Y. Uchikawa T. On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm. IEEE Trans. Neural Networks. 3(5):1992;801-806.
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.5 , pp. 801-806
    • Horikawa, S.1    Furuhashi, Y.2    Uchikawa, T.3
  • 6
    • 0002926184 scopus 로고
    • Iterative fuzzy modeling and a hierarchical network
    • Brussels, vol. Eng.
    • H. Ichihashi, Iterative fuzzy modeling and a hierarchical network, Proc. 4th IFSA World Congress, Brussels, vol. Eng., 1991, pp. 49-52.
    • (1991) Proc. 4th IFSA World Congress , pp. 49-52
    • Ichihashi, H.1
  • 7
    • 38249001004 scopus 로고
    • A neuro-fuzzy approach to data analysis of pairwise comparisons
    • Ichihashi H., Tuksen I.B. A neuro-fuzzy approach to data analysis of pairwise comparisons. Int. J. Approximate Reasoning. 9(3):1993;227-248.
    • (1993) Int. J. Approximate Reasoning , vol.9 , Issue.3 , pp. 227-248
    • Ichihashi, H.1    Tuksen, I.B.2
  • 8
    • 0001066231 scopus 로고
    • Learning control by a simplified fuzzy reasoning
    • (in Japanese)
    • H. Ichihashi, T. Watanabe, Learning control by a simplified fuzzy reasoning, J. Japan Soc. Fuzzy Theory Systems 2 (3) (1990) 429-437 (in Japanese).
    • (1990) J. Japan Soc. Fuzzy Theory Systems , vol.2 , Issue.3 , pp. 429-437
    • Ichihashi, H.1    Watanabe, T.2
  • 11
    • 0025839504 scopus 로고
    • A Gaussian potential function network with hierarchically self-organization learning
    • Lee S., Kil R.M. A Gaussian potential function network with hierarchically self-organization learning. IEEE Trans. Neural Networks. 4(1):1991;207-224.
    • (1991) IEEE Trans. Neural Networks , vol.4 , Issue.1 , pp. 207-224
    • Lee, S.1    Kil, R.M.2
  • 12
    • 0039805995 scopus 로고
    • An automobile tracking control with a fuzzy logic
    • Osaka, (in Japanese)
    • M. Maeda, S. Murakami, An automobile tracking control with a fuzzy logic, Proc. 3rd Fuzzy System Symp., Osaka, 1987, pp. 61-66 (in Japanese).
    • (1987) Proc. 3rd Fuzzy System Symp. , pp. 61-66
    • Maeda, M.1    Murakami, S.2
  • 13
    • 0038155446 scopus 로고
    • An acquisition method of fuzzy reasoning rules by neural network with dynamic creative function of hidden units
    • (in Japanese)
    • T. Masuda, S. Yaku, An acquisition method of fuzzy reasoning rules by neural network with dynamic creative function of hidden units, J. Japan Soc. Fuzzy Theory Systems 5 (2) (1993) 348-358 (in Japanese).
    • (1993) J. Japan Soc. Fuzzy Theory Systems , vol.5 , Issue.2 , pp. 348-358
    • Masuda, T.1    Yaku, S.2
  • 14
    • 0000603779 scopus 로고
    • A self-tuning method of fuzzy control by descent method
    • Brussels, vol. Eng.
    • H. Nomura, I. Hayashi, N. Wakami, A self-tuning method of fuzzy control by descent method, Proc. 4th IFSA World Congr., Brussels, vol. Eng., 1991, pp. 155-158.
    • (1991) Proc. 4th IFSA World Congr. , pp. 155-158
    • Nomura, H.1    Hayashi, I.2    Wakami, N.3
  • 17
    • 0003161979 scopus 로고    scopus 로고
    • A new approach of neuro-fuzzy learning algorithm for tuning fuzzy rules
    • in press
    • Y. Shi, M. Mizumoto, A new approach of neuro-fuzzy learning algorithm for tuning fuzzy rules, Fuzzy Sets and Systems, in press.
    • Fuzzy Sets and Systems
    • Shi, Y.1    Mizumoto, M.2
  • 18
    • 0040398482 scopus 로고    scopus 로고
    • A method of fuzzy rules generation based on neuro-fuzzy learning algorithm
    • (in Japanese)
    • Y. Shi, M. Mizumoto, N. Yubazaki, M. Otani, A method of fuzzy rules generation based on neuro-fuzzy learning algorithm, J. Japan Soc. Fuzzy Theory Systems 8 (4) (1996) 695-705 (in Japanese).
    • (1996) J. Japan Soc. Fuzzy Theory Systems , vol.8 , Issue.4 , pp. 695-705
    • Shi, Y.1    Mizumoto, M.2    Yubazaki, N.3    Otani, M.4
  • 19
    • 0039805997 scopus 로고    scopus 로고
    • A self-tuning method of fuzzy rules based on the gradient descent method
    • (in Japanese)
    • Y. Shi, M. Mizumoto, N. Yubazaki, M. Otani, A self-tuning method of fuzzy rules based on the gradient descent method, J. Japan Soc. Fuzzy Theory Systems 8 (4) (1996) 757-765 (in Japanese).
    • (1996) J. Japan Soc. Fuzzy Theory Systems , vol.8 , Issue.4 , pp. 757-765
    • Shi, Y.1    Mizumoto, M.2    Yubazaki, N.3    Otani, M.4
  • 20
    • 0030377564 scopus 로고    scopus 로고
    • A learning algorithm for tuning fuzzy rules based on the gradient descent method
    • New Orleans
    • Y. Shi, M. Mizumoto, N. Yubazaki, M. Otani, A learning algorithm for tuning fuzzy rules based on the gradient descent method, Proc. 5th IEEE Int. Conf. on Fuzzy Systems, New Orleans, vol. 1, 1996, pp. 55-61.
    • (1996) Proc. 5th IEEE Int. Conf. on Fuzzy Systems , vol.1 , pp. 55-61
    • Shi, Y.1    Mizumoto, M.2    Yubazaki, N.3    Otani, M.4
  • 21
    • 0040992612 scopus 로고
    • Identification of a pulse rate prediction model for activity sensing pacer via a fuzzy modeling method
    • (in Japanese)
    • K. Tanaka. N. Kashiwagi, H. Nakajima, Identification of a pulse rate prediction model for activity sensing pacer via a fuzzy modeling method, J. Japan Soc. Fuzzy Theory Systems 6 (4) (1994) 756-764 (in Japanese).
    • (1994) J. Japan Soc. Fuzzy Theory Systems , vol.6 , Issue.4 , pp. 756-764
    • Tanaka, K.1    Kashiwagi, N.2    Nakajima, H.3
  • 23
    • 0026984801 scopus 로고
    • Back-propagation fuzzy system as nonlinear dynamic system identifiers
    • San Diego
    • L.X. Wang, J.M. Mendel, Back-propagation fuzzy system as nonlinear dynamic system identifiers, Proc. IEEE Int. Conf. on Fuzzy Systems, San Diego, 1992, pp. 1409-1416.
    • (1992) Proc. IEEE Int. Conf. on Fuzzy Systems , pp. 1409-1416
    • Wang, L.X.1    Mendel, J.M.2
  • 25
    • 84974755191 scopus 로고
    • Generation of fuzzy rules by mountain clustering
    • Yager R.R., Filev D.P. Generation of fuzzy rules by mountain clustering. J. Intelligent Fuzzy Systems. 2(3):1994;209-219.
    • (1994) J. Intelligent Fuzzy Systems , vol.2 , Issue.3 , pp. 209-219
    • Yager, R.R.1    Filev, D.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.