메뉴 건너뛰기




Volumn , Issue , 2007, Pages 391-400

Binary matrix factorization with applications

Author keywords

[No Author keywords available]

Indexed keywords

ADMINISTRATIVE DATA PROCESSING; DATA MINING; DECISION SUPPORT SYSTEMS; FACTORIZATION; INFORMATION MANAGEMENT; LIGHT MEASUREMENT; MINING; SEARCH ENGINES; STANDARDS;

EID: 48249083709     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2007.99     Document Type: Conference Paper
Times cited : (155)

References (27)
  • 4
    • 33749255098 scopus 로고    scopus 로고
    • On the equivalence of non-negative matrix factorization and spectral clustering
    • C. Ding, X. He, and H. Simon. On the equivalence of non-negative matrix factorization and spectral clustering. Proc. SIAM Data Mining Conf, 2005.
    • (2005) Proc. SIAM Data Mining Conf
    • Ding, C.1    He, X.2    Simon, H.3
  • 5
    • 33749575326 scopus 로고    scopus 로고
    • Orthogonal nonneg-ative matrix tri-factorizations for clustering
    • C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonneg-ative matrix tri-factorizations for clustering. In SIGKDD, pages 126-135, 2006.
    • (2006) SIGKDD , pp. 126-135
    • Ding, C.1    Li, T.2    Peng, W.3    Park, H.4
  • 6
    • 0000802374 scopus 로고
    • The approximation of one matrix by another of lower rank
    • C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1:183-187, 1936.
    • (1936) Psychometrika , vol.1 , pp. 183-187
    • Eckart, C.1    Young, G.2
  • 7
    • 27744601822 scopus 로고    scopus 로고
    • Improving molecular cancer class discovery through sparse non-negative matrix factorization
    • Y. Gao and G. Church. Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics, 21(21):3970-3975, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.21 , pp. 3970-3975
    • Gao, Y.1    Church, G.2
  • 10
    • 4544339167 scopus 로고
    • Defining transcription modules using large-scale gene expression data
    • 2004
    • J. Ihmels, S. Bergmann, and N. Barkai. Defining transcription modules using large-scale gene expression data. Bioin-formatics, 20(13):1993-2003, 2004.
    • (1993) Bioin-formatics , vol.20 , Issue.13
    • Ihmels, J.1    Bergmann, S.2    Barkai, N.3
  • 12
    • 33749243962 scopus 로고    scopus 로고
    • Discriminative cluster analysis
    • F. D. la Torre and T. Kanade. Discriminative cluster analysis. In ICML, 2006.
    • (2006) ICML
    • la Torre, F.D.1    Kanade, T.2
  • 13
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, H.S.2
  • 14
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negatvie matrix factorization
    • D. Lee and H. S. Seung. Algorithms for non-negatvie matrix factorization. In NIPS, 2001.
    • (2001) NIPS
    • Lee, D.1    Seung, H.S.2
  • 15
    • 32344435747 scopus 로고    scopus 로고
    • A general model for clustering binary data
    • T. Li. A general model for clustering binary data. In SIGKDD, pages 188-197, 2005.
    • (2005) SIGKDD , pp. 188-197
    • Li, T.1
  • 16
    • 49849097634 scopus 로고    scopus 로고
    • The relationships among various nonneg-ative matrix factorization methods for clustering
    • T. Li and C. Ding. The relationships among various nonneg-ative matrix factorization methods for clustering. In ICDM, pages 362-371, 2006.
    • (2006) ICDM , pp. 362-371
    • Li, T.1    Ding, C.2
  • 17
    • 8644250640 scopus 로고    scopus 로고
    • Document clustering via adaptive subspace iteration
    • T. Li, S. Ma, and M. Ogihara. Document clustering via adaptive subspace iteration. In SIGIR, pages 218-225, 2004.
    • (2004) SIGIR , pp. 218-225
    • Li, T.1    Ma, S.2    Ogihara, M.3
  • 18
    • 32344445368 scopus 로고    scopus 로고
    • Co-clustering by block value decomposition
    • B. Long, Z. Zhang, and P. Yu. Co-clustering by block value decomposition. In SIGKDD, pages 635-640, 2005.
    • (2005) SIGKDD , pp. 635-640
    • Long, B.1    Zhang, Z.2    Yu, P.3
  • 19
    • 33745052298 scopus 로고    scopus 로고
    • Non-orthogonal decomposition of binary matrices for bounded-error data compression and analysis
    • March
    • A. G. M Koyuturk and N. Ramakrishnan. Non-orthogonal decomposition of binary matrices for bounded-error data compression and analysis. ACM Transactions on Mathematical Software, 32(1):33-69, March 2006.
    • (2006) ACM Transactions on Mathematical Software , vol.32 , Issue.1 , pp. 33-69
    • Koyuturk, A.G.M.1    Ramakrishnan, N.2
  • 22
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5:111-126, 1994.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 24
    • 84899026127 scopus 로고    scopus 로고
    • Multiplicative updates for non-negative quadratic programming in support vector machines
    • F. Sha, L. Saul, and D. Lee. Multiplicative updates for non-negative quadratic programming in support vector machines. In NIPS, pages 1041-1048. 2003.
    • (2003) NIPS , pp. 1041-1048
    • Sha, F.1    Saul, L.2    Lee, D.3
  • 25
    • 0141506116 scopus 로고    scopus 로고
    • Click and expander: A system for clustering and visualizing gene expression data
    • R. Sharan, A. Maron-Katz, and R. Shamir. Click and expander: a system for clustering and visualizing gene expression data. Bioinformatics, 19(14):1787-1799, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.14 , pp. 1787-1799
    • Sharan, R.1    Maron-Katz, A.2    Shamir, R.3
  • 26
    • 11244306358 scopus 로고    scopus 로고
    • Discovering statistically significant biclusters in gene expression data
    • A. Tanay, R. Sharan, and R. Shamir. Discovering statistically significant biclusters in gene expression data. Bioinformatics, 18(90001):S136-S144, 2002.
    • (2002) Bioinformatics , vol.18
    • Tanay, A.1    Sharan, R.2    Shamir, R.3
  • 27
    • 33749556153 scopus 로고    scopus 로고
    • Clsi: A flexible approximation scheme from clustered term-document matrices
    • D. Zeimpekis and E. Gallopoulos. Clsi: A flexible approximation scheme from clustered term-document matrices. Proc. SIAM Data Mining Conf, pages 631-635, 2005.
    • (2005) Proc. SIAM Data Mining Conf , pp. 631-635
    • Zeimpekis, D.1    Gallopoulos, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.