메뉴 건너뛰기




Volumn 52, Issue 12, 2008, Pages 5356-5366

Assessing agreement of clustering methods with gene expression microarray data

Author keywords

[No Author keywords available]

Indexed keywords

BIOACTIVITY; BOOLEAN FUNCTIONS; CLUSTER ANALYSIS; FLOW OF SOLIDS; FUNCTION EVALUATION; GENE EXPRESSION; GENES; LAWS AND LEGISLATION;

EID: 47749085849     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2008.06.004     Document Type: Article
Times cited : (10)

References (27)
  • 1
    • 2342646842 scopus 로고    scopus 로고
    • LSimpute: Accurate estimation of missing values in microarray data with least squares methods
    • Bø T.H., Dysvik B., and Jonassen I. LSimpute: Accurate estimation of missing values in microarray data with least squares methods. Nucleic Acids Res. 32 (2004) e34
    • (2004) Nucleic Acids Res. , vol.32
    • Bø, T.H.1    Dysvik, B.2    Jonassen, I.3
  • 3
    • 13244278004 scopus 로고    scopus 로고
    • Influence of microarrays experiments missing values on the stability of gene groups by hierarchical clustering
    • de Brevern A., Hazout S., and Malpertuy A. Influence of microarrays experiments missing values on the stability of gene groups by hierarchical clustering. BMC Bioinformatics 5 (2004) 114
    • (2004) BMC Bioinformatics , vol.5 , pp. 114
    • de Brevern, A.1    Hazout, S.2    Malpertuy, A.3
  • 5
    • 0001138328 scopus 로고
    • A K-means clustering algorithm
    • Hartigan J.A., and Wong M.A. A K-means clustering algorithm. Appl. Statist. 28 (1979) 100-108
    • (1979) Appl. Statist. , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 8
    • 0035979259 scopus 로고    scopus 로고
    • Bootstrapping clustering analysis: Assessing the reliability of conclusions from microarray experiments
    • Kerr K., and Churchill G. Bootstrapping clustering analysis: Assessing the reliability of conclusions from microarray experiments. Proc. Natl. Acad. Sci. USA 98 (2001) 8961-8965
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 8961-8965
    • Kerr, K.1    Churchill, G.2
  • 9
    • 0037339264 scopus 로고    scopus 로고
    • Clustering of time-course gene expression data using a mixed-effects model with B-splines
    • Luan Y., and Li H. Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics 19 (2003) 474-482
    • (2003) Bioinformatics , vol.19 , pp. 474-482
    • Luan, Y.1    Li, H.2
  • 11
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • Monti S., Tamayo P., Mesirov P., and Golub T. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning. 52 (2003) 101-118
    • (2003) Machine Learning. , vol.52 , pp. 101-118
    • Monti, S.1    Tamayo, P.2    Mesirov, P.3    Golub, T.4
  • 12
    • 0035375137 scopus 로고    scopus 로고
    • Computational analysis of microarray
    • Quackenbush J. Computational analysis of microarray. Nat. Rev. Genet. 2 (2001) 418-427
    • (2001) Nat. Rev. Genet. , vol.2 , pp. 418-427
    • Quackenbush, J.1
  • 13
    • 4444356084 scopus 로고    scopus 로고
    • Supervised cluster analysis for microarray data based on multivariate Gaussian mixture
    • Qu Y., and Xu S. Supervised cluster analysis for microarray data based on multivariate Gaussian mixture. Bioinformatics 20 (2004) 1905-1913
    • (2004) Bioinformatics , vol.20 , pp. 1905-1913
    • Qu, Y.1    Xu, S.2
  • 14
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand W.M. Objective criteria for the evaluation of clustering methods. J. Am. Statist. Assoc. 66 (1971) 846-850
    • (1971) J. Am. Statist. Assoc. , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 16
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization
    • Spellman, et al. Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biol. Cell 9 (1998) 3273-3297
    • (1998) Molecular Biol. Cell , vol.9 , pp. 3273-3297
    • Spellman1
  • 19
    • 33750021210 scopus 로고    scopus 로고
    • Evaluation and comparison of gene clustering methods in microarray analysis
    • Thalamuthu A., Mukhopadhyay I., Zheng X., and Tseng G.C. Evaluation and comparison of gene clustering methods in microarray analysis. Bioinformatics 22 (2006) 2405-2412
    • (2006) Bioinformatics , vol.22 , pp. 2405-2412
    • Thalamuthu, A.1    Mukhopadhyay, I.2    Zheng, X.3    Tseng, G.C.4
  • 20
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a dataset Via the Gap statistic
    • Tibshirani R., Walther G., and Hastie T. Estimating the number of clusters in a dataset Via the Gap statistic. J. Roy. Statist. Soc. Ser. B 63 (1999) 411-423
    • (1999) J. Roy. Statist. Soc. Ser. B , vol.63 , pp. 411-423
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 21
    • 15044346962 scopus 로고    scopus 로고
    • Tight clustering: A resampling-based approach for identifying stable and tight patterns in data
    • Tseng G.C., and Wong W.H. Tight clustering: A resampling-based approach for identifying stable and tight patterns in data. Biometrics 61 (2005) 10-16
    • (2005) Biometrics , vol.61 , pp. 10-16
    • Tseng, G.C.1    Wong, W.H.2
  • 22
    • 33644856110 scopus 로고    scopus 로고
    • Improving missing value estimation in microarray data with gene ontology
    • Tuikkala J., Elo L., and Aittokallio T. Improving missing value estimation in microarray data with gene ontology. Bioinformatics 22 (2006) 566-572
    • (2006) Bioinformatics , vol.22 , pp. 566-572
    • Tuikkala, J.1    Elo, L.2    Aittokallio, T.3
  • 23
    • 36949015566 scopus 로고    scopus 로고
    • Unsupervised feature selection under perturbabtions: Meeting the challenges of biological data
    • Varshavsky R., Gottlieb A., Horn D., and Linial M. Unsupervised feature selection under perturbabtions: Meeting the challenges of biological data. Bioinformatics 23 (2007) 3343-3349
    • (2007) Bioinformatics , vol.23 , pp. 3343-3349
    • Varshavsky, R.1    Gottlieb, A.2    Horn, D.3    Linial, M.4
  • 24
    • 34249744481 scopus 로고    scopus 로고
    • A multi-stage approach to clustering and imputation of gene expression profiles
    • Wong D.S., Wong F.K., and Wood G.R. A multi-stage approach to clustering and imputation of gene expression profiles. Bioinformatics 23 (2007) 998-1005
    • (2007) Bioinformatics , vol.23 , pp. 998-1005
    • Wong, D.S.1    Wong, F.K.2    Wood, G.R.3
  • 25
    • 0036649020 scopus 로고    scopus 로고
    • Large-scale prediction of saccharomyces cerevisiae gene function using overlapping transcriptional clusters
    • Wu L.F., Hughes T.R., Davierwala A.P., Robinson M.D., Stoughton R., and Altschuler S.J. Large-scale prediction of saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nat. Genetics 32 (2002) 255-265
    • (2002) Nat. Genetics , vol.32 , pp. 255-265
    • Wu, L.F.1    Hughes, T.R.2    Davierwala, A.P.3    Robinson, M.D.4    Stoughton, R.5    Altschuler, S.J.6
  • 26
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • Yeung K.Y., Fraley C., Murua A., Raftery A.E., and Ruzzo W.L. Model-based clustering and data transformations for gene expression data. Bioinformatics 17 (2001) 977-987
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1    Fraley, C.2    Murua, A.3    Raftery, A.E.4    Ruzzo, W.L.5
  • 27
    • 0035024021 scopus 로고    scopus 로고
    • Validating clustering for gene expression data
    • Yeung K.Y., Haynor D.R., and Ruzzo W.L. Validating clustering for gene expression data. Bioinformatics 17 (2001) 309-318
    • (2001) Bioinformatics , vol.17 , pp. 309-318
    • Yeung, K.Y.1    Haynor, D.R.2    Ruzzo, W.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.