메뉴 건너뛰기




Volumn 27, Issue 15, 2004, Pages 1771-1782

On blow-up rate for sign-changing solutions in a convex domain

Author keywords

Blow up rate; Blow up solution; Rescaled equation; Semilinear heat equation

Indexed keywords

DATA REDUCTION; FUNCTIONS; LINEAR EQUATIONS; MATHEMATICAL MODELS; MATHEMATICAL OPERATORS; THEOREM PROVING; TIME DOMAIN ANALYSIS;

EID: 4744344778     PISSN: 01704214     EISSN: None     Source Type: Journal    
DOI: 10.1002/mma.562     Document Type: Conference Paper
Times cited : (45)

References (26)
  • 1
    • 3042688935 scopus 로고    scopus 로고
    • Blow up rate for semilinear heat equation with subcritical nonlinearity
    • Giga Y, Matsui S, Sasayama S. Blow up rate for semilinear heat equation with subcritical nonlinearity. Indiana University Mathematics Journal 2004; 53:483-514.
    • (2004) Indiana University Mathematics Journal , vol.53 , pp. 483-514
    • Giga, Y.1    Matsui, S.2    Sasayama, S.3
  • 10
    • 0032338170 scopus 로고    scopus 로고
    • Optimal estimates for blowup rate and behavior for nonlinear heat equations
    • Melre F, Zaag H. Optimal estimates for blowup rate and behavior for nonlinear heat equations. Communications on Pure and Applied Mathematics 1998; 51:139-196.
    • (1998) Communications on Pure and Applied Mathematics , vol.51 , pp. 139-196
    • Melre, F.1    Zaag, H.2
  • 13
    • 0011234286 scopus 로고    scopus 로고
    • Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity
    • Filippas S, Herrero MA, Velázquez JJL. Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity. Proceedings of the Royal Society of London A 2000; 456: 2957-2982.
    • (2000) Proceedings of the Royal Society of London A , vol.456 , pp. 2957-2982
    • Filippas, S.1    Herrero, M.A.2    Velázquez, J.J.L.3
  • 16
    • 0141524202 scopus 로고    scopus 로고
    • Blow-up behavior for semilinear heat equation with boundary conditions
    • Ishige K, Mizoguchi N. Blow-up behavior for semilinear heat equation with boundary conditions. Differential and Integral Equations 2003; 16:663-690.
    • (2003) Differential and Integral Equations , vol.16 , pp. 663-690
    • Ishige, K.1    Mizoguchi, N.2
  • 17
    • 46149140458 scopus 로고
    • p and regularity of weak solutions of the Navier-Stokes system
    • p and regularity of weak solutions of the Navier-Stokes system. Journal of Differential Equations 1986; 62:541-554.
    • (1986) Journal of Differential Equations , vol.62 , pp. 541-554
    • Giga, Y.1
  • 21
    • 0037887545 scopus 로고    scopus 로고
    • A priori bounds for global solutions of a semilinear parabolic problem
    • Quittner P. A priori bounds for global solutions of a semilinear parabolic problem. Acta Mathematica Univercitatis Comenianae 1999; 68(2):195-203.
    • (1999) Acta Mathematica Univercitatis Comenianae , vol.68 , Issue.2 , pp. 195-203
    • Quittner, P.1
  • 24
    • 0013332276 scopus 로고
    • Linear and quasilinear parabolic problems
    • Birkhäuser: Basel
    • Amann H. Linear and Quasilinear Parabolic Problems. vol. I, Abstract Linear Theory. Birkhäuser: Basel, 1995.
    • (1995) Abstract Linear Theory , vol.1
    • Amann, H.1
  • 25
    • 0002460928 scopus 로고
    • p estimates for the Cauchy problem with application to the Navier-Stokes equations in exterior domains
    • p estimates for the Cauchy problem with application to the Navier-Stokes equations in exterior domains. Journal of Functional Analysis 1991; 102:72-94.
    • (1991) Journal of Functional Analysis , vol.102 , pp. 72-94
    • Giga, Y.1    Sohr, H.2
  • 26
    • 0042515249 scopus 로고    scopus 로고
    • Blowup rate of solutions for a semilinear heat equation with the Neumann boundary condition
    • Mizoguchi N. Blowup rate of solutions for a semilinear heat equation with the Neumann boundary condition. Journal of Differential Equations 2003; 193:212-238.
    • (2003) Journal of Differential Equations , vol.193 , pp. 212-238
    • Mizoguchi, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.