-
1
-
-
84971116414
-
On the blow up of solutions for a convective reaction diffusion equation
-
[AE]
-
[AE] J. AGUIRRE, M. ESCOBEDO, On the blow up of solutions for a convective reaction diffusion equation, Proc. Roy. Soc. Edinburgh 123A (1993), 433-460.
-
(1993)
Proc. Roy. Soc. Edinburgh
, vol.123 A
, pp. 433-460
-
-
Aguirre, J.1
Escobedo, M.2
-
2
-
-
0000581856
-
Some blowup results for a nonlinear parabolic equation with a gradient term
-
[CW]
-
[CW] M. CHIPOT, F.B. WEISSLER, Some blowup results for a nonlinear parabolic equation with a gradient term, SIAM J. Math. Anal. 20 (1989), 886-907.
-
(1989)
SIAM J. Math. Anal.
, vol.20
, pp. 886-907
-
-
Chipot, M.1
Weissler, F.B.2
-
3
-
-
0002499851
-
From critical exponents to blow-up rates for parabolic problems
-
[CF]
-
[CF] M. CHLEBÍK, M. FILA, From critical exponents to blow-up rates for parabolic problems, Rend. Mat. Appl., Ser. VII 19 (1999), 449-470.
-
(1999)
Rend. Mat. Appl., Ser. VII
, vol.19
, pp. 449-470
-
-
Chlebík, M.1
Fila, M.2
-
4
-
-
84894265109
-
Blow-up of positive solutions of a semilinear parabolic equation with a gradient term
-
[CFQ] to appear
-
[CFQ] M. CHLEBÍK, M. FILA, P. QUITTNER, Blow-up of positive solutions of a semilinear parabolic equation with a gradient term, Dyn. Contin. Discrete Impulsive Syst., to appear.
-
Dyn. Contin. Discrete Impulsive Syst.
-
-
Chlebík, M.1
Fila, M.2
Quittner, P.3
-
5
-
-
0030544718
-
Blow-up rates for parabolic systems
-
[D]
-
[D] K. DENG, Blow-up rates for parabolic systems, Z. angew. Math. Phys. 47 (1996), 132-143.
-
(1996)
Z. Angew. Math. Phys.
, vol.47
, pp. 132-143
-
-
Deng, K.1
-
6
-
-
0000199722
-
Boundedness and blow up for a semilinear reaction-diffusion system
-
[EH]
-
[EH] M. ESCOBEDO, M.A. HERRERO, Boundedness and blow up for a semilinear reaction-diffusion system, J. Differ. Equations 89 (1991), 176-202.
-
(1991)
J. Differ. Equations
, vol.89
, pp. 176-202
-
-
Escobedo, M.1
Herrero, M.A.2
-
8
-
-
0000332576
-
Characterizing blowup using similarity variables
-
[GK]
-
[GK] Y. GIGA, R.V. KOHN, Characterizing blowup using similarity variables, Indiana Univ. Math. J. 36 (1987), 1-40.
-
(1987)
Indiana Univ. Math. J.
, vol.36
, pp. 1-40
-
-
Giga, Y.1
Kohn, R.V.2
-
9
-
-
0000469761
-
On the nonexistence of global solutions of some semilinear parabolic equations
-
[H]
-
[H] K. HAYAKAWA, On the nonexistence of global solutions of some semilinear parabolic equations, Proc. Japan Acad. 49 (1973), 503-525.
-
(1973)
Proc. Japan Acad.
, vol.49
, pp. 503-525
-
-
Hayakawa, K.1
-
10
-
-
0001091789
-
Remarks on the blowup estimate for solution of the heat equation with a nonlinear boundary condition
-
[Hu]
-
[Hu] B. HU, Remarks on the blowup estimate for solution of the heat equation with a nonlinear boundary condition, Differential Integral Equations 9 (1996), 891-901.
-
(1996)
Differential Integral Equations
, vol.9
, pp. 891-901
-
-
Hu, B.1
-
11
-
-
84948486085
-
Remarks on the large time behaviour of a nonlinear diffusion equation
-
[K]
-
[K] O. KAVIAN, Remarks on the large time behaviour of a nonlinear diffusion equation, Ann. Inst. II. Poincaré, Anal. non linéaire 4 (1987), 423-452.
-
(1987)
Ann. Inst. II. Poincaré, Anal. Non Linéaire
, vol.4
, pp. 423-452
-
-
Kavian, O.1
-
12
-
-
84972506638
-
On the blowing up problem for semilinear heat equations
-
[KST]
-
[KST] K. KOBAYASHI, T. SIRAO, H. TANAKA, On the blowing up problem for semilinear heat equations, J. Math. Soc. Japan 29 (1977), 407-424.
-
(1977)
J. Math. Soc. Japan
, vol.29
, pp. 407-424
-
-
Kobayashi, K.1
Sirao, T.2
Tanaka, H.3
-
14
-
-
0000658046
-
A Fujita type global existence - Global nonexistence theorem for a weakly coupled system of reaction-diffusion equations
-
[L]
-
[L] H.A. LEVINE, A Fujita type global existence - global nonexistence theorem for a weakly coupled system of reaction-diffusion equations, Z. angew. Math. Phys. 42 (1992), 408-430.
-
(1992)
Z. Angew. Math. Phys.
, vol.42
, pp. 408-430
-
-
Levine, H.A.1
-
15
-
-
0005885270
-
A blowup result for the critical exponent in cones
-
[LM]
-
[LM] H.A. LEVINE, P. MEIER, A blowup result for the critical exponent in cones, Israel J. Math. 67 (1989), 129-136.
-
(1989)
Israel J. Math.
, vol.67
, pp. 129-136
-
-
Levine, H.A.1
Meier, P.2
-
16
-
-
0000350812
-
Analysis of convective reaction-diffusion equation (II)
-
[LPSS]
-
[LPSS] H.A. LEVINE, L.N. PAYNE, P.E. SACKS, B. STRAUGHAN, Analysis of convective reaction-diffusion equation (II), SIAM J. Math. Anal. 20 (1989), 133-147.
-
(1989)
SIAM J. Math. Anal.
, vol.20
, pp. 133-147
-
-
Levine, H.A.1
Payne, L.N.2
Sacks, P.E.3
Straughan, B.4
-
17
-
-
0347340616
-
Blow-up behavior for semilinear heat equations in nonconvex domains
-
[P]
-
[P] C.-C. POON, Blow-up behavior for semilinear heat equations in nonconvex domains, Differential Integral Equations 13 (2000), 1111-1138.
-
(2000)
Differential Integral Equations
, vol.13
, pp. 1111-1138
-
-
Poon, C.-C.1
-
18
-
-
0347340615
-
Blow-up rates for nonlinear heat equations with gradient terms and for parabolic inequalities
-
[ST]
-
[ST] PH. SOUPLET, S. TAYACHI, Blow-up rates for nonlinear heat equations with gradient terms and for parabolic inequalities, Colloq. Math. 88 (2001), 135-154.
-
(2001)
Colloq. Math.
, vol.88
, pp. 135-154
-
-
Souplet, P.H.1
Tayachi, S.2
-
19
-
-
48549114032
-
Single point blow-up for a semilinear initial value problem
-
[W1]
-
[W1] F. WEISSLER, Single point blow-up for a semilinear initial value problem, J. Differ. Equations 55 (1984), 204-224.
-
(1984)
J. Differ. Equations
, vol.55
, pp. 204-224
-
-
Weissler, F.1
-
20
-
-
84990581880
-
∞ blow-up estimate for a nonlinear heat equation
-
[W2]
-
∞ blow-up estimate for a nonlinear heat equation, Commun. Pure Appl. Math. 38 (1985), 291-295.
-
(1985)
Commun. Pure Appl. Math.
, vol.38
, pp. 291-295
-
-
Weissler, F.1
|