-
2
-
-
0026966646
-
An Training Algorithm for Optimal Margin Classifiers
-
Pittsburgh, Pennsylvania
-
B. Boser, I. Guyon, and V. Vapnik, "An Training Algorithm for Optimal Margin Classifiers", in proc. of 5th ACM Annual Workshop on Computational Learning Theory, Pittsburgh, Pennsylvania, 1992, pp. 144-152.
-
(1992)
proc. of 5th ACM Annual Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.1
Guyon, I.2
Vapnik, V.3
-
3
-
-
0346786584
-
Arcing Classifiers
-
L. Breiman, "Arcing Classifiers", The annals of statistics, 26(3), 1998, pp. 801-849.
-
(1998)
The annals of statistics
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
4
-
-
80052866161
-
Incremental and Decremental Support Vector Machine Learning
-
MIT Press
-
G. Cauwenberghs, and T. Poggio, "Incremental and Decremental Support Vector Machine Learning", in Advances in Neural Information Processing Systems, MIT Press, Vol. 13, 2001, pp. 409-415.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 409-415
-
-
Cauwenberghs, G.1
Poggio, T.2
-
7
-
-
34250704916
-
Classifying one Billion Data with a New Distributed SVM Algorithm
-
Vietnam
-
T.N. Do and F. Poulet, "Classifying one Billion Data with a New Distributed SVM Algorithm", in proc. of RIVF'06, 4th IEEE International Conference on Computer Science, Research, Innovation and Vision for the Future, Ho Chi Minh, Vietnam, 2006, pp. 59-66.
-
(2006)
proc. of RIVF'06, 4th IEEE International Conference on Computer Science, Research, Innovation and Vision for the Future, Ho Chi Minh
, pp. 59-66
-
-
Do, T.N.1
Poulet, F.2
-
8
-
-
8444237072
-
Towards High Dimensional Data Mining with Boosting of PSVM and Visualization Tools
-
Porto, Portugal
-
T.N. Do and F. Poulet, "Towards High Dimensional Data Mining with Boosting of PSVM and Visualization Tools", in proc. of ICEIS'04, 6th Int. Conf. on Entreprise Information Systems, Vol. 2, Porto, Portugal, 2004, pp. 36-41.
-
(2004)
proc. of ICEIS'04, 6th Int. Conf. on Entreprise Information Systems
, vol.2
, pp. 36-41
-
-
Do, T.N.1
Poulet, F.2
-
9
-
-
84983110889
-
A Decision-theoretic Generalization of On-line Learning and an Application to Boosting
-
Y. Freund, and R. Schapire, "A Decision-theoretic Generalization of On-line Learning and an Application to Boosting", EuroColt, 1995, pp. 23-37.
-
(1995)
EuroColt
, pp. 23-37
-
-
Freund, Y.1
Schapire, R.2
-
11
-
-
0041916184
-
Incremental Support Vector Machine Classification
-
Arlington, Virginia, USA
-
G. Fung, and O. Mangasarian, "Incremental Support Vector Machine Classification", in proc. of the 2nd SIAM Int. Conf. on Data Mining SDM'2002 Arlington, Virginia, USA, 2002.
-
(2002)
proc. of the 2nd SIAM Int. Conf. on Data Mining SDM
-
-
Fung, G.1
Mangasarian, O.2
-
12
-
-
0004236492
-
-
John Hopkins University Press, Balti-more, Maryland
-
G. Golub, and C. Van Loan, Matrix Computations, John Hopkins University Press, Balti-more, Maryland, 1996.
-
(1996)
Matrix Computations
-
-
Golub, G.1
Van Loan, C.2
-
14
-
-
0242383563
-
A Finite Newton Method for Classification Problems
-
01-11, Computer Sciences Department, University of Wisconsin
-
O. Mangasarian. A Finite Newton Method for Classification Problems. Data Mining Institute Technical Report 01-11, Computer Sciences Department, University of Wisconsin, 2001.
-
(2001)
Data Mining Institute Technical Report
-
-
Mangasarian, O.1
-
15
-
-
0347512512
-
Lagrangian Support Vector Machines
-
O. Mangasarian, and D. Musicant, "Lagrangian Support Vector Machines", Journal of Machine Learning Research, Vol. 1,2001, pp. 161-177.
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 161-177
-
-
Mangasarian, O.1
Musicant, D.2
-
16
-
-
0003120218
-
Fast Training of Support Vector Machines Using Sequential Minimal Optimization
-
B. Schoelkopf, C. Burges, and A. Smola Eds
-
J. Piatt, "Fast Training of Support Vector Machines Using Sequential Minimal Optimization", in Advances in Kernel Methods - Support Vector Learning, B. Schoelkopf, C. Burges, and A. Smola Eds., 1999, pp. 185-208.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Piatt, J.1
-
17
-
-
34250705806
-
How Boosting the Margin Can also Boost Classifier Complexity
-
Pittsburgh, Pennsylvania, USA
-
L. Reyzin, and R.E. Schapire, "How Boosting the Margin Can also Boost Classifier Complexity", in proc. of ICML'06, the 23rd Int. Conf. on Machine Learning, Pittsburgh, Pennsylvania, USA, 2006, pp. 753-760.
-
(2006)
proc. of ICML'06, the 23rd Int. Conf. on Machine Learning
, pp. 753-760
-
-
Reyzin, L.1
Schapire, R.E.2
-
18
-
-
0032638628
-
Least Squares Support Vector Machines Classifiers
-
J. Suykens, and J. Vandewalle, "Least Squares Support Vector Machines Classifiers", Neural Processing Letters, 9(3), 1999, pp. 293-300.
-
(1999)
Neural Processing Letters
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.1
Vandewalle, J.2
-
19
-
-
0003007938
-
Support Vector Machine Active Learning with Applications to Text Classification
-
Stanford, USA
-
S. Tong, and D. Koller, "Support Vector Machine Active Learning with Applications to Text Classification", in proc. of ICML'00, the 17th Int. Conf. on Machine Learning, Stanford, USA, 2000, pp. 999-1006.
-
(2000)
proc. of ICML'00, the 17th Int. Conf. on Machine Learning
, pp. 999-1006
-
-
Tong, S.1
Koller, D.2
-
21
-
-
77952390455
-
Classifying Large Data Sets Using SVMs with Hierarchical Clusters
-
H. Yu, J. Yang, and J. Han, "Classifying Large Data Sets Using SVMs with Hierarchical Clusters", in proc. of the ACM SIGKDD Int. Conf. on KDD, 2003, pp. 306-315.
-
(2003)
proc. of the ACM SIGKDD Int. Conf. on KDD
, pp. 306-315
-
-
Yu, H.1
Yang, J.2
Han, J.3
|