메뉴 건너뛰기




Volumn 4, Issue 4, 2008, Pages 62-83

Effectiveness of fuzzy classifier rules in capturing correlations between genes

Author keywords

Feature reduction; Fuzzy classifier rules; Gene expression; Gene selection

Indexed keywords

FUZZY SETS; FUZZY SYSTEMS; GENES; LINGUISTICS;

EID: 47349085571     PISSN: 15483924     EISSN: 15483932     Source Type: Journal    
DOI: 10.4018/jdwm.2008100104     Document Type: Article
Times cited : (5)

References (26)
  • 1
    • 33746263532 scopus 로고    scopus 로고
    • Tech. rep, NR Note, SAMBA, Norwegian Computing Center
    • Aas, K. (2001). Microarray data mining: A survey. Tech. rep., NR Note, SAMBA, Norwegian Computing Center.
    • (2001) Microarray data mining: A survey
    • Aas, K.1
  • 2
    • 0029242750 scopus 로고
    • A method for fuzzy rules extraction directly from numerical data and its application to pattern classification
    • Abe, S., & Lan, M.-S. (1995). A method for fuzzy rules extraction directly from numerical data and its application to pattern classification. IEEE Trans. on Fuzzy Systems, 3(1), 18-28.
    • (1995) IEEE Trans. on Fuzzy Systems , vol.3 , Issue.1 , pp. 18-28
    • Abe, S.1    Lan, M.-S.2
  • 11
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46(13), 389-422.
    • (2002) Machine Learning , vol.46 , Issue.13 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 12
  • 13
    • 85036942424 scopus 로고    scopus 로고
    • U
    • [http://sdmc.lit.org.sg/GEDatasets/Datasets.html], U. (2007).
    • (2007)
  • 14
    • 0013053252 scopus 로고    scopus 로고
    • Techniques and applications of genetic algorithms-based methods for designing compact fuzzy classification systems
    • Ishibuchi, H., & Murata, T. (1999). Techniques and applications of genetic algorithms-based methods for designing compact fuzzy classification systems. Fuzzy Theory Systems Techniques & Applications, 3(40), 1081-1109.
    • (1999) Fuzzy Theory Systems Techniques & Applications , vol.3 , Issue.40 , pp. 1081-1109
    • Ishibuchi, H.1    Murata, T.2
  • 15
    • 0032597810 scopus 로고    scopus 로고
    • Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems
    • Ishibuchi, H., Nakashima, T., & Muratam, T. (1999). Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Trans. on Systems, Man, and Cybernetics - Part B, 29(5), 601-618.
    • (1999) IEEE Trans. on Systems, Man, and Cybernetics - Part B , vol.29 , Issue.5 , pp. 601-618
    • Ishibuchi, H.1    Nakashima, T.2    Muratam, T.3
  • 16
    • 0002197262 scopus 로고
    • Distributed representation of fuzzy rules and its application to pattern classification
    • Ishibuchi, H., Nozaki, K., & Tanaka, H. (1992). Distributed representation of fuzzy rules and its application to pattern classification. Fuzzy Sets and Systems, 52(1), 21-32.
    • (1992) Fuzzy Sets and Systems , vol.52 , Issue.1 , pp. 21-32
    • Ishibuchi, H.1    Nozaki, K.2    Tanaka, H.3
  • 20
    • 0028384240 scopus 로고
    • Self-organizing neural network as a fuzzy classifier
    • Mitra, S., & Pal, S.K. (1994). Self-organizing neural network as a fuzzy classifier. IEEE Trans. on Systems Man, and Cybernetics, 24(3), 385-399.
    • (1994) IEEE Trans. on Systems Man, and Cybernetics , vol.24 , Issue.3 , pp. 385-399
    • Mitra, S.1    Pal, S.K.2
  • 21
    • 0013161560 scopus 로고    scopus 로고
    • On feature selection: Learning with exponentially many irrelevant features as training examples
    • Ng, A.Y. (1998). On feature selection: Learning with exponentially many irrelevant features as training examples. Proceedings of the International Conference on Machine Learning, 404-412.
    • (1998) Proceedings of the International Conference on Machine Learning , pp. 404-412
    • Ng, A.Y.1
  • 22
    • 23944451661 scopus 로고    scopus 로고
    • Microarray data mining: Facing the challenges
    • Piatetsky-Shapiro, G., & Tamayo, P. (2003). Microarray data mining: facing the challenges. SIGKDD Explorations, 5, 2-5.
    • (2003) SIGKDD Explorations , vol.5 , pp. 2-5
    • Piatetsky-Shapiro, G.1    Tamayo, P.2
  • 26
    • 0642282547 scopus 로고    scopus 로고
    • Using feature generation and feature selection for accurate prediction of translation initiation sites
    • Zeng, F., Yap, C.H.R., & Wong, L. (2002). Using feature generation and feature selection for accurate prediction of translation initiation sites. Genome Informatics, 13, 192-200.
    • (2002) Genome Informatics , vol.13 , pp. 192-200
    • Zeng, F.1    Yap, C.H.R.2    Wong, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.