-
5
-
-
33748318060
-
-
Bishnoi S.W., Rozell C.J., Levin C.S., Gheith M.K., Johnson B.R., Johnson D.H., and Halas N.J. Nano Lett. 6 (2006) 1687
-
(2006)
Nano Lett.
, vol.6
, pp. 1687
-
-
Bishnoi, S.W.1
Rozell, C.J.2
Levin, C.S.3
Gheith, M.K.4
Johnson, B.R.5
Johnson, D.H.6
Halas, N.J.7
-
8
-
-
0031246382
-
-
Dannenberger O., Weiss K., Himmel H.-J., Jäger B., Buck M., and Wöll C. Thin Solid Films 307 (1997) 183
-
(1997)
Thin Solid Films
, vol.307
, pp. 183
-
-
Dannenberger, O.1
Weiss, K.2
Himmel, H.-J.3
Jäger, B.4
Buck, M.5
Wöll, C.6
-
9
-
-
0031237209
-
-
Himmel H.-J., Weiss K., Jäger B., Dannenberger O., Grunze M., and Wöll C. Langmuir 13 (1997) 4943
-
(1997)
Langmuir
, vol.13
, pp. 4943
-
-
Himmel, H.-J.1
Weiss, K.2
Jäger, B.3
Dannenberger, O.4
Grunze, M.5
Wöll, C.6
-
13
-
-
0030126947
-
-
Wells M., Dermody D.L., Yang H.C., Kim T., and Crooks R.M. Langmuir 12 (1996) 1989
-
(1996)
Langmuir
, vol.12
, pp. 1989
-
-
Wells, M.1
Dermody, D.L.2
Yang, H.C.3
Kim, T.4
Crooks, R.M.5
-
14
-
-
1842791836
-
-
Willey T.M., Vance A.L., van Buuren T., Bostedt C., Nelson A.J., Terminello L.J., and Fadley C.S. Langmuir 20 (2004) 2746
-
(2004)
Langmuir
, vol.20
, pp. 2746
-
-
Willey, T.M.1
Vance, A.L.2
van Buuren, T.3
Bostedt, C.4
Nelson, A.J.5
Terminello, L.J.6
Fadley, C.S.7
-
15
-
-
33846349516
-
-
Lee J.R.I., Willey T.M., Nilsson J., Terminello L.J., de Yoreo J.J., and van Buuren T. Langmuir 22 (2006) 11134
-
(2006)
Langmuir
, vol.22
, pp. 11134
-
-
Lee, J.R.I.1
Willey, T.M.2
Nilsson, J.3
Terminello, L.J.4
de Yoreo, J.J.5
van Buuren, T.6
-
20
-
-
34548057064
-
-
Barriet D., Yam C.M., Shmakova O.E., Jamison A.C., and Lee T.R. Langmuir 23 (2007) 8866
-
(2007)
Langmuir
, vol.23
, pp. 8866
-
-
Barriet, D.1
Yam, C.M.2
Shmakova, O.E.3
Jamison, A.C.4
Lee, T.R.5
-
23
-
-
0347367030
-
-
Lahann J., Mitragotri S., Tran T.-N., Kaido H., Sundaram J., Choi I.S., Hoffer S., Somarjai G.A., and Langer R. Science 299 (2003) 371
-
(2003)
Science
, vol.299
, pp. 371
-
-
Lahann, J.1
Mitragotri, S.2
Tran, T.-N.3
Kaido, H.4
Sundaram, J.5
Choi, I.S.6
Hoffer, S.7
Somarjai, G.A.8
Langer, R.9
-
31
-
-
0033540627
-
-
Creager S., Yu C.J., Bamdad C., O'Connor S., MacLean T., Lam E., Chong Y., Olsen G.T., Luo J., Gozin M., and Kayyem J.F. J. Am. Chem. Soc. 121 (1999) 1059
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 1059
-
-
Creager, S.1
Yu, C.J.2
Bamdad, C.3
O'Connor, S.4
MacLean, T.5
Lam, E.6
Chong, Y.7
Olsen, G.T.8
Luo, J.9
Gozin, M.10
Kayyem, J.F.11
-
32
-
-
0043264240
-
-
Arihara K., Ariga T., Takashima N., Arihara K., Okajima T., Kitamura F., Tokuda K., and Ohsaka T. Phys. Chem. Chem. Phys. 17 (2003) 3758
-
(2003)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 3758
-
-
Arihara, K.1
Ariga, T.2
Takashima, N.3
Arihara, K.4
Okajima, T.5
Kitamura, F.6
Tokuda, K.7
Ohsaka, T.8
-
33
-
-
47249146815
-
-
The pH of deareated 50 mM NaF is about 8.2-8.5 whereas the measured pH of 1 mM NaF was roughly 1 pH unit lower. Given that the voltammetric peak is very sensitive to pH we had to adjust the pH of 1 mM NaF to 8.3 using dilute NaOH. However, the amount of NaOH added is negligible in terms of the electrolyte's total ionic strength.
-
The pH of deareated 50 mM NaF is about 8.2-8.5 whereas the measured pH of 1 mM NaF was roughly 1 pH unit lower. Given that the voltammetric peak is very sensitive to pH we had to adjust the pH of 1 mM NaF to 8.3 using dilute NaOH. However, the amount of NaOH added is negligible in terms of the electrolyte's total ionic strength.
-
-
-
-
34
-
-
47249116898
-
-
We chose 5 mM ionic strength buffers as a compromise between buffering capacity and minimized sodium ion concentrations. At the pH values studied, a 5 mM NaPB ionic strength buffer has a sodium ion concentration of about 10 mM. This level of cation concentration allowed us to repetitively cycle the potential long enough to obtain CVs whose peak potentials were steady before the peak heights decayed to background levels. We were reluctant to use lower concentrations due to diminished buffering capacities of such solutions.
-
We chose 5 mM ionic strength buffers as a compromise between buffering capacity and minimized sodium ion concentrations. At the pH values studied, a 5 mM NaPB ionic strength buffer has a sodium ion concentration of about 10 mM. This level of cation concentration allowed us to repetitively cycle the potential long enough to obtain CVs whose peak potentials were steady before the peak heights decayed to background levels. We were reluctant to use lower concentrations due to diminished buffering capacities of such solutions.
-
-
-
-
53
-
-
53949123153
-
-
Alkire R.C., Kolb D.M., Lipkowski J., and Ross P.N. (Eds), Wiley-VCH, Weinheim (Chapter 9)
-
Zamlynny V., and Lipkowski J. In: Alkire R.C., Kolb D.M., Lipkowski J., and Ross P.N. (Eds). Advances in Electrochemical Science and Engineering vol. 1 (2006), Wiley-VCH, Weinheim (Chapter 9)
-
(2006)
Advances in Electrochemical Science and Engineering
, vol.1
-
-
Zamlynny, V.1
Lipkowski, J.2
-
64
-
-
0033101276
-
-
Smalley J.F., Chalfant K., Feldberg S.W., Nahir T.M., and Bowden E.F. J. Phys. Chem. B 103 (1999) 1676
-
(1999)
J. Phys. Chem. B
, vol.103
, pp. 1676
-
-
Smalley, J.F.1
Chalfant, K.2
Feldberg, S.W.3
Nahir, T.M.4
Bowden, E.F.5
-
66
-
-
0001763020
-
-
Zhao J., Luo L., Yang X., Wang E., and Dong S. Electroanalysis 11 (1999) 1108
-
(1999)
Electroanalysis
, vol.11
, pp. 1108
-
-
Zhao, J.1
Luo, L.2
Yang, X.3
Wang, E.4
Dong, S.5
|