-
1
-
-
0014297593
-
The effectiveness of adjustment by subclassification in removing bias in observational studies
-
Cochran WG. The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics. 1968;24:205-13.
-
(1968)
Biometrics
, vol.24
, pp. 205-213
-
-
Cochran, W.G.1
-
2
-
-
33846403798
-
Estimating treatment effects using observational data
-
D'Agostino RB Jr, D'Agostino RB Sr. Estimating treatment effects using observational data. JAMA. 2007;297(3):314-6.
-
(2007)
JAMA
, vol.297
, Issue.3
, pp. 314-316
-
-
D'Agostino Jr, R.B.1
D'Agostino Sr., R.B.2
-
3
-
-
77951622706
-
The central role of the propensity score in observational studies for causal affects
-
Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal affects. Biometrika. 1983;70:41-55.
-
(1983)
Biometrika
, vol.70
, pp. 41-55
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
4
-
-
3543135271
-
Tutorial in biostatistics
-
D'Agostino RB Jr. Tutorial in biostatistics. Stat Med. 1998;17:2265-81.
-
(1998)
Stat Med
, vol.17
, pp. 2265-2281
-
-
D'Agostino Jr., R.B.1
-
5
-
-
33750606026
-
Confounding: Propensity score adjustment
-
Fitzmaurice G. Confounding: propensity score adjustment. Nutrition. 2006;22:1214-6.
-
(2006)
Nutrition
, vol.22
, pp. 1214-1216
-
-
Fitzmaurice, G.1
-
6
-
-
33749450696
-
Too much ado about prorensity score models? Comparing methods of propensity score matching
-
Baser O. Too much ado about prorensity score models? Comparing methods of propensity score matching. Value in Health. 2006;9:377-85.
-
(2006)
Value in Health
, vol.9
, pp. 377-385
-
-
Baser, O.1
-
7
-
-
85144841000
-
Using multivariate matched sampling and regression adjustment to control bias in observational studies
-
Rubin DB. Using multivariate matched sampling and regression adjustment to control bias in observational studies. J Am Sat Assoc. 1979;74:318-28.
-
(1979)
J Am Sat Assoc
, vol.74
, pp. 318-328
-
-
Rubin, D.B.1
-
8
-
-
0030862072
-
Estimating causal effects from large data sets using propensity scores
-
Rubin DB. Estimating causal effects from large data sets using propensity scores. Ann Intern Med. 1997;127:757-63.
-
(1997)
Ann Intern Med
, vol.127
, pp. 757-763
-
-
Rubin, D.B.1
-
9
-
-
33645226210
-
A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods
-
Stürmer T, Joshi M, Glynn RJ, Avorn J, Rothman KJ, Schneeweiss S, et al. A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. J Clin Epidemiol. 2006;59:437-47.
-
(2006)
J Clin Epidemiol
, vol.59
, pp. 437-447
-
-
Stürmer, T.1
Joshi, M.2
Glynn, R.J.3
Avorn, J.4
Rothman, K.J.5
Schneeweiss, S.6
-
10
-
-
18844452973
-
Propensity score methods gave similar results to tradicional regression modeling in observational studies: A systematic review
-
Shah BR, Laupacis A, Hux JE, Austin PC. Propensity score methods gave similar results to tradicional regression modeling in observational studies: a systematic review. J Clin Epidemiol. 2005;58:550-9.
-
(2005)
J Clin Epidemiol
, vol.58
, pp. 550-559
-
-
Shah, B.R.1
Laupacis, A.2
Hux, J.E.3
Austin, P.C.4
|