메뉴 건너뛰기




Volumn , Issue , 2007, Pages 523-528

Efficient coding of labelled graphs

Author keywords

Graphical models; Minimum description length

Indexed keywords

(E ,2E) THEORY; (I ,J) CONDITIONS; CODE LENGTHS; DATA COMPRESSION ALGORITHMS; DIRECTED GRAPHS; GRAPHICAL MODELLING; LABELLED GRAPHS; NETWORK RECONSTRUCTION;

EID: 46749138737     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ITW.2007.4313129     Document Type: Conference Paper
Times cited : (3)

References (12)
  • 1
    • 0018015137 scopus 로고
    • Modeling by the shortest data description
    • Rissanen, J. (1978) Modeling by the shortest data description. Automatica, 14, 465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 2
    • 0027582840 scopus 로고
    • Coding decision trees
    • C. S.Wallace (1993) Coding decision trees. Machine Learning, 11, 7-22.
    • (1993) Machine Learning , vol.11 , pp. 7-22
    • Wallace, C.S.1
  • 3
    • 0142036370 scopus 로고
    • Using the minimum description length principle to infer reduced ordered decision graphs
    • A. L. Oliveira and A. Sangiovanni-Vincentelli (1995) Using the minimum description length principle to infer reduced ordered decision graphs. Machine Learning, 12, 1-30.
    • (1995) Machine Learning , vol.12 , pp. 1-30
    • Oliveira, A.L.1    Sangiovanni-Vincentelli, A.2
  • 4
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: An approach based on the MDL principle
    • W. Lam and F. Bacchus (1994) Learning Bayesian belief networks: an approach based on the MDL principle. Comp. Intel., 10, 269-293.
    • (1994) Comp. Intel , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 5
    • 0000220520 scopus 로고    scopus 로고
    • Learning Bayesian networks with local structure
    • M. I. Jordon, editor, MIT press, Cambridge, Massachusetts
    • N. Friedman and M. Goldszmidt (1998), Learning Bayesian networks with local structure, in Learning in Graphical Models, M. I. Jordon, editor, MIT press, Cambridge, Massachusetts.
    • (1998) Learning in Graphical Models
    • Friedman, N.1    Goldszmidt, M.2
  • 6
    • 0027652468 scopus 로고
    • Substructure discovery using mini-mum description length and background knowledge
    • D. J. Cook and L. B.Holder (1994) Substructure discovery using mini-mum description length and background knowledge. J. of Art. Intel. Res., 1, 231-255.
    • (1994) J. of Art. Intel. Res , vol.1 , pp. 231-255
    • Cook, D.J.1    Holder, L.B.2
  • 9
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks
    • N. Friedman and D. Koller, Being Bayesian about network structure: a Bayesian approach to structure discovery in Bayesian networks, Machine Learning, 50, 95-125.
    • Machine Learning , vol.50 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 10
    • 33846596160 scopus 로고    scopus 로고
    • A graphical approach to relatedness inference
    • A. Almudevar (2007) A graphical approach to relatedness inference. Theor. Pop. Biol., 71, 213-229.
    • (2007) Theor. Pop. Biol , vol.71 , pp. 213-229
    • Almudevar, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.