메뉴 건너뛰기




Volumn 78, Issue 3, 2008, Pages

Lower limit on the achievable temperature in resonator-based sideband cooling

Author keywords

[No Author keywords available]

Indexed keywords


EID: 46749124664     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.78.035406     Document Type: Article
Times cited : (52)

References (35)
  • 2
    • 23844473866 scopus 로고    scopus 로고
    • PHTOAD 0031-9228
    • K. C. Schwab and M. L. Roukes, Phys. Today PHTOAD 0031-9228 58 (7), 36 (2005).
    • (2005) Phys. Today , vol.58 , Issue.7 , pp. 36
    • Schwab, K.C.1    Roukes, M.L.2
  • 6
    • 1642632624 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.92.075507
    • I. Wilson-Rae, P. Zoller, and A. Imamoglu, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.92.075507 92, 075507 (2004).
    • (2004) Phys. Rev. Lett. , vol.92 , pp. 075507
    • Wilson-Rae, I.1    Zoller, P.2    Imamoglu, A.3
  • 7
    • 35848936082 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.76.205302
    • F. Xue, Y. D. Wang, Y. X. Liu, and F. Nori, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.76.205302 76, 205302 (2007).
    • (2007) Phys. Rev. B , vol.76 , pp. 205302
    • Xue, F.1    Wang, Y.D.2    Liu, Y.X.3    Nori, F.4
  • 10
    • 2342430947 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.69.125339
    • I. Martin, A. Shnirman, L. Tian, and P. Zoller, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.69.125339 69, 125339 (2004).
    • (2004) Phys. Rev. B , vol.69 , pp. 125339
    • Martin, I.1    Shnirman, A.2    Tian, L.3    Zoller, P.4
  • 13
    • 34548814780 scopus 로고    scopus 로고
    • PLEEE8 1063-651X 10.1103/PhysRevE.76.031105
    • H. T. Quan, Y. Liu, C. P. Sun, and F. Nori, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.76.031105 76, 031105 (2007).
    • (2007) Phys. Rev. e , vol.76 , pp. 031105
    • Quan, H.T.1    Liu, Y.2    Sun, C.P.3    Nori, F.4
  • 15
    • 38849100210 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.100.047001
    • J. Q. You, Y. X. Liu, and F. Nori, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.100.047001 100, 047001 (2008).
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 047001
    • You, J.Q.1    Liu, Y.X.2    Nori, F.3
  • 16
    • 0018000591 scopus 로고
    • It is worth mentioning here that similar sideband cooling mechanisms have appeared in different contexts over the years. See, e.g., 1063-7834
    • It is worth mentioning here that similar sideband cooling mechanisms have appeared in different contexts over the years. See, e.g., M. I. Dykman, Sov. Phys. Solid State 20, 1306 (1978). 1063-7834
    • (1978) Sov. Phys. Solid State , vol.20 , pp. 1306
    • Dykman, M.I.1
  • 20
    • 33845269357 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.97.237201
    • L. F. Wei, Y. X. Liu, C. P. Sun, and F. Nori, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.97.237201 97, 237201 (2006).
    • (2006) Phys. Rev. Lett. , vol.97 , pp. 237201
    • Wei, L.F.1    Liu, Y.X.2    Sun, C.P.3    Nori, F.4
  • 22
    • 27544445288 scopus 로고    scopus 로고
    • PHTOAD 0031-9228
    • J. Q. You and F. Nori, Phys. Today PHTOAD 0031-9228 58 (11), 42 (2005).
    • (2005) Phys. Today , vol.58 , Issue.11 , pp. 42
    • You, J.Q.1    Nori, F.2
  • 23
    • 33745297751 scopus 로고    scopus 로고
    • NJOPFM 1367-2630 10.1088/1367-2630/8/6/105
    • S. Savel'ev, X. Hu, and F. Nori, New J. Phys. NJOPFM 1367-2630 10.1088/1367-2630/8/6/105 8, 105 (2006).
    • (2006) New J. Phys. , vol.8 , pp. 105
    • Savel'Ev, S.1    Hu, X.2    Nori, F.3
  • 30
    • 46749109111 scopus 로고    scopus 로고
    • It should be emphasized here that the presence of a nonlinearity in the Hamiltonian is crucial for the cooling mechanism. In other words, a completely linear system [i.e., a system composed of two linear oscillators that are coupled linearly to each other, to the environment, and to the driving force (Ref.)] will not experience any thermal change in the presence or absence of an ideal driving force. The nonlinearity can therefore be seen as a mixer between the resonator frequency and the driving frequency that allows the "upconversion" of vibrational quanta and therefore cooling.
    • It should be emphasized here that the presence of a nonlinearity in the Hamiltonian is crucial for the cooling mechanism. In other words, a completely linear system [i.e., a system composed of two linear oscillators that are coupled linearly to each other, to the environment, and to the driving force (Ref.)] will not experience any thermal change in the presence or absence of an ideal driving force. The nonlinearity can therefore be seen as a mixer between the resonator frequency and the driving frequency that allows the "upconversion" of vibrational quanta and therefore cooling.
  • 31
    • 46749098888 scopus 로고    scopus 로고
    • In this paper we use the convention where linear coupling between two harmonic oscillators means a coupling term of the form g (α ar + α ar†) (β am + β am†) and linear coupling to the driving force means a term of the form (ζ ar + ζ ar† +η am + η am†) cos (ωp t+θ), where α, β, ζ, η, ωp, and θ are constants. Under this convention parametric driving, i.e., when the coupling strength g in Eq. 24 is modulated by an externally applied signal, corresponds to a nonlinear driving term. Although such parametric driving can be used to implement the sideband cooling mechanism, in this paper we are only considering the case where the externally applied driving signal couples to the charge on the resonator, i.e., a linear driving term according to the convention that we follow
    • In this paper we use the convention where linear coupling between two harmonic oscillators means a coupling term of the form g (α ar + α ar†) (β am + β am†) and linear coupling to the driving force means a term of the form (ζ ar + ζ ar† +η am + η am†) cos (ωp t+θ), where α, β, ζ, η, ωp, and θ are constants. Under this convention parametric driving, i.e., when the coupling strength g in Eq. 24 is modulated by an externally applied signal, corresponds to a nonlinear driving term. Although such parametric driving can be used to implement the sideband cooling mechanism, in this paper we are only considering the case where the externally applied driving signal couples to the charge on the resonator, i.e., a linear driving term according to the convention that we follow. Since we further assume a linear mechanical oscillator and linear coupling to the environment (in the case of linear oscillators), a nonlinearity is needed either in the coolant Hamiltonian or the coupling term.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.