-
1
-
-
23944504793
-
Converse Lyapunov theorems and robust asymptotic stability for hybrid systems
-
C. Cai, A.R. Teel, and R. Goebel. Converse Lyapunov theorems and robust asymptotic stability for hybrid systems. In Proc. 24th American Control Conf., pages 12-17, 2005.
-
(2005)
Proc. 24th American Control Conf
, pp. 12-17
-
-
Cai, C.1
Teel, A.R.2
Goebel, R.3
-
2
-
-
0002239179
-
Asymptotic stability and smooth Lyapunov functions
-
F.H. Clarke, Y.S. Ledyaev, and R.J. Stern. Asymptotic stability and smooth Lyapunov functions. J. Diff. Equations, 149( 1):69-114, 1998.
-
(1998)
J. Diff. Equations
, vol.149
, Issue.1
, pp. 69-114
-
-
Clarke, F.H.1
Ledyaev, Y.S.2
Stern, R.J.3
-
4
-
-
0026204666
-
Adding an integrator for the stabilization problem
-
J.-M. Coron and L. Praly. Adding an integrator for the stabilization problem. Systems & Control Letters, 17(2):89-104, 1991.
-
(1991)
Systems & Control Letters
, vol.17
, Issue.2
, pp. 89-104
-
-
Coron, J.-M.1
Praly, L.2
-
5
-
-
85049442043
-
Hybrid systems: Generalized solutions and robust stability
-
Stuttgart, Germany
-
R. Goebel, J. Hespanha, A.R. Teel, C. Cai, and R. Sanfelice. Hybrid systems: generalized solutions and robust stability. In IFAC Symposium on Nonlinear Control Systems, pages 1-12, Stuttgart, Germany, 2004.
-
(2004)
IFAC Symposium on Nonlinear Control Systems
, pp. 1-12
-
-
Goebel, R.1
Hespanha, J.2
Teel, A.R.3
Cai, C.4
Sanfelice, R.5
-
7
-
-
33144463923
-
Solutions to hybrid inclusions via set and graphical convergence with stability theory applications
-
R. Goebel and A.R. Teel. Solutions to hybrid inclusions via set and graphical convergence with stability theory applications. Automatica, 42:573-587, 2006.
-
(2006)
Automatica
, vol.42
, pp. 573-587
-
-
Goebel, R.1
Teel, A.R.2
-
11
-
-
0033097583
-
Stabilization of nonholonomic integrators via logic-based switching
-
J.P. Hespanha and A.S. Morse. Stabilization of nonholonomic integrators via logic-based switching. Automatica, 35(3):385-393, 1999.
-
(1999)
Automatica
, vol.35
, Issue.3
, pp. 385-393
-
-
Hespanha, J.P.1
Morse, A.S.2
-
12
-
-
84968512344
-
Singular perturbations on the infinite interval
-
F.C. Hoppensteadt. Singular perturbations on the infinite interval. Trans. Amer. Math. Soc., 123:521-535, 1966.
-
(1966)
Trans. Amer. Math. Soc
, vol.123
, pp. 521-535
-
-
Hoppensteadt, F.C.1
-
14
-
-
0037252690
-
Dynamical properties of hybrid automata
-
J. Lygeros, K.H. Johansson, S.N. Simić, J. Zhang, and S.S. Sastry. Dynamical properties of hybrid automata. IEEE Transactions on Automatic Control, 48(1):2-17, 2003.
-
(2003)
IEEE Transactions on Automatic Control
, vol.48
, Issue.1
, pp. 2-17
-
-
Lygeros, J.1
Johansson, K.H.2
Simić, S.N.3
Zhang, J.4
Sastry, S.S.5
-
15
-
-
10244242681
-
Global asymptotic controllability implies input-to-state stabilizationtems
-
M. Malisoff, L. Rifford, and E. Sontag. Global asymptotic controllability implies input-to-state stabilizationtems. SIAM Journal on Control & Optimization, 42(6):2221-2238, 2004.
-
(2004)
SIAM Journal on Control & Optimization
, vol.42
, Issue.6
, pp. 2221-2238
-
-
Malisoff, M.1
Rifford, L.2
Sontag, E.3
-
16
-
-
84906329012
-
Design of stable control systems subject to parametric perturbations
-
A.M. Meilakhs. Design of stable control systems subject to parametric perturbations. Auto. & Remote Control, 39(10): 1409-1418, 1978.
-
(1978)
Auto. & Remote Control
, vol.39
, Issue.10
, pp. 1409-1418
-
-
Meilakhs, A.M.1
-
17
-
-
0242270733
-
Robust stabilization of chained systems via hybrid control
-
C. Prieur and A. Astolfi. Robust stabilization of chained systems via hybrid control. IEEE Transactions on Automatic Control, 48(10):1768-1772, 2003.
-
(2003)
IEEE Transactions on Automatic Control
, vol.48
, Issue.10
, pp. 1768-1772
-
-
Prieur, C.1
Astolfi, A.2
-
18
-
-
33745784418
-
Results on robust stabilization of asymptotically controllable systems by hybrid feedback
-
C. Prieur, R. Goebel, and A.R. Teel. Results on robust stabilization of asymptotically controllable systems by hybrid feedback. In Proc. 44th IEEE Conf. on Decision and Control, pages 2598-2603, 2005.
-
(2005)
Proc. 44th IEEE Conf. on Decision and Control
, pp. 2598-2603
-
-
Prieur, C.1
Goebel, R.2
Teel, A.R.3
-
19
-
-
0024647058
-
Smooth stabilization implies coprime factorization
-
E. Sontag. Smooth stabilization implies coprime factorization. IEEE Transactions on Automatic Control, 34:435-443, 1989.
-
(1989)
IEEE Transactions on Automatic Control
, vol.34
, pp. 435-443
-
-
Sontag, E.1
-
20
-
-
0034426073
-
A smooth Lyapunov function from a class-KL estimate involving two positive simidefinite functions
-
A.R. Teel and L. Praly. A smooth Lyapunov function from a class-KL estimate involving two positive simidefinite functions. ESAIM: Control, Optimisation and Calculus of Variations, 5:313-367, 2000.
-
(2000)
ESAIM: Control, Optimisation and Calculus of Variations
, vol.5
, pp. 313-367
-
-
Teel, A.R.1
Praly, L.2
-
21
-
-
0024865167
-
Sufficient Lyapunov-like conditions for stabilization
-
J. Tsinias. Sufficient Lyapunov-like conditions for stabilization. Math. Control Signals Systems, 2(4):343-357, 1989.
-
(1989)
Math. Control Signals Systems
, vol.2
, Issue.4
, pp. 343-357
-
-
Tsinias, J.1
|