메뉴 건너뛰기




Volumn 77, Issue 21, 2008, Pages

Short-range spin and charge correlations and local density of states in the colossal magnetoresistance regime of the single-orbital model for manganites

Author keywords

[No Author keywords available]

Indexed keywords


EID: 46049096084     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.77.214434     Document Type: Article
Times cited : (26)

References (64)
  • 3
    • 0037720481 scopus 로고    scopus 로고
    • PRPLCM 0370-1573 10.1016/S0370-1573(00)00121-6
    • E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. PRPLCM 0370-1573 10.1016/S0370-1573(00)00121-6 344, 1 (2001).
    • (2001) Phys. Rep. , vol.344 , pp. 1
    • Dagotto, E.1    Hotta, T.2    Moreo, A.3
  • 4
    • 22044436405 scopus 로고    scopus 로고
    • SCIEAS 0036-8075 10.1126/science.1107559
    • E. Dagotto, Science SCIEAS 0036-8075 10.1126/science.1107559 309, 257 (2005).
    • (2005) Science , vol.309 , pp. 257
    • Dagotto, E.1
  • 5
    • 0035540766 scopus 로고    scopus 로고
    • RMPHAT 0034-6861 10.1103/RevModPhys.73.583
    • M. B. Salamon and M. Jaime, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.73.583 73, 583 (2001).
    • (2001) Rev. Mod. Phys. , vol.73 , pp. 583
    • Salamon, M.B.1    Jaime, M.2
  • 6
    • 33947176114 scopus 로고    scopus 로고
    • SCIEAS 0036-8075 10.1126/science.1138578
    • A. P. Ramirez, Science SCIEAS 0036-8075 10.1126/science.1138578 315, 1377 (2007)
    • (2007) Science , vol.315 , pp. 1377
    • Ramirez, A.P.1
  • 7
    • 36248935182 scopus 로고    scopus 로고
    • SCIEAS 0036-8075 10.1126/science.1151094
    • E. Dagotto, Science SCIEAS 0036-8075 10.1126/science.1151094 318, 1076 (2007), and references therein.
    • (2007) Science , vol.318 , pp. 1076
    • Dagotto, E.1
  • 8
    • 33751116771 scopus 로고
    • PHRVAO 0031-899X 10.1103/PhysRev.81.440
    • C. Zener, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.81.440 81, 440 (1951)
    • (1951) Phys. Rev. , vol.81 , pp. 440
    • Zener, C.1
  • 9
    • 36149016363 scopus 로고
    • PHRVAO 0031-899X 10.1103/PhysRev.82.403
    • C. Zener, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.82.403 82, 403 (1951).
    • (1951) Phys. Rev. , vol.82 , pp. 403
    • Zener, C.1
  • 11
    • 0001323479 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.59.4170
    • M. J. Calderón, J. A. Vergés, and L. Brey, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.59.4170 59, 4170 (1999).
    • (1999) Phys. Rev. B , vol.59 , pp. 4170
    • Calderón, M.J.1    Vergés, J.A.2    Brey, L.3
  • 14
    • 0033605660 scopus 로고    scopus 로고
    • SCIEAS 0036-8075 10.1126/science.283.5410.2034
    • A. Moreo, S. Yunoki, and E. Dagotto, Science SCIEAS 0036-8075 10.1126/science.283.5410.2034 283, 2034 (1999).
    • (1999) Science , vol.283 , pp. 2034
    • Moreo, A.1    Yunoki, S.2    Dagotto, E.3
  • 17
    • 0037914789 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.65.241202
    • M. Mayr, G. Alvarez, and E. Dagotto, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.65.241202 65, 241202 (R) (2002).
    • (2002) Phys. Rev. B , vol.65 , pp. 241202
    • Mayr, M.1    Alvarez, G.2    Dagotto, E.3
  • 18
    • 2442602130 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.92.097202
    • J. Burgy, A. Moreo, and E. Dagotto, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.92.097202 92, 097202 (2004).
    • (2004) Phys. Rev. Lett. , vol.92 , pp. 097202
    • Burgy, J.1    Moreo, A.2    Dagotto, E.3
  • 19
  • 20
    • 18144386220 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.94.136601
    • S. Kumar and P. Majumdar, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.136601 94, 136601 (2005).
    • (2005) Phys. Rev. Lett. , vol.94 , pp. 136601
    • Kumar, S.1    Majumdar, P.2
  • 21
    • 32644475141 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.96.016602
    • S. Kumar and P. Majumdar, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.016602 96, 016602 (2006)
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 016602
    • Kumar, S.1    Majumdar, P.2
  • 22
    • 18144386220 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.94.136601
    • S. Kumar and P. Majumdar, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.136601 94, 136601 (2005)
    • (2005) Phys. Rev. Lett. , vol.94 , pp. 136601
    • Kumar, S.1    Majumdar, P.2
  • 24
    • 33846496119 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.75.014209
    • S. Kumar, A. P. Kampf, and P. Majumdar, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.75.014209 75, 014209 (2007)
    • (2007) Phys. Rev. B , vol.75 , pp. 014209
    • Kumar, S.1    Kampf, A.P.2    Majumdar, P.3
  • 25
    • 40849093175 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.100.076406
    • S. Kumar and A. Kampf, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.100.076406 100, 076406 (2008).
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 076406
    • Kumar, S.1    Kampf, A.2
  • 26
    • 33744930591 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.73.214404
    • J. Salafranca and L. Brey, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.73.214404 73, 214404 (2006).
    • (2006) Phys. Rev. B , vol.73 , pp. 214404
    • Salafranca, J.1    Brey, L.2
  • 27
    • 33745520731 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.73.224441
    • C. Şen, G. Alvarez, H. Aliaga, and E. Dagotto, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.73.224441 73, 224441 (2006).
    • (2006) Phys. Rev. B , vol.73 , pp. 224441
    • Şen, C.1    Alvarez, G.2    Aliaga, H.3    Dagotto, E.4
  • 28
    • 33947599530 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.98.127202
    • C. Şen, G. Alvarez, and E. Dagotto, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.98.127202 98, 127202 (2007).
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 127202
    • Şen, C.1    Alvarez, G.2    Dagotto, E.3
  • 29
    • 37649026972 scopus 로고    scopus 로고
    • In the clean limit, experimental results have confirmed that the phase diagram of manganites contains a first-order transition separating the FM metallic and AF/CO insulating phases, see PRBMDO 0163-1829 10.1103/PhysRevB.70. 014432
    • In the clean limit, experimental results have confirmed that the phase diagram of manganites contains a first-order transition separating the FM metallic and AF/CO insulating phases, see Y. Tomioka and Y. Tokura, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.70.014432 70, 014432 (2004).
    • (2004) Phys. Rev. B , vol.70 , pp. 014432
    • Tomioka, Y.1    Tokura, Y.2
  • 34
    • 0001486701 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.83.2773
    • A. Moreo, S. Yunoki, and E. Dagotto, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.83.2773 83, 2773 (1999).
    • (1999) Phys. Rev. Lett. , vol.83 , pp. 2773
    • Moreo, A.1    Yunoki, S.2    Dagotto, E.3
  • 35
    • 15444375768 scopus 로고    scopus 로고
    • Photoemission studies in bilayered manganites have shown the existence of a pseudogap in these materials in the CMR regime. See PRLTAO 0031-9007 10.1103/PhysRevLett.81.192
    • Photoemission studies in bilayered manganites have shown the existence of a pseudogap in these materials in the CMR regime. See D. S. Dessau, T. Saitoh, C.-H. Park, Z.-X. Shen, P. Villella, N. Hamada, Y. Moritomo, and Y. Tokura, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.81.192 81, 192 (1998)
    • (1998) Phys. Rev. Lett. , vol.81 , pp. 192
    • Dessau, D.S.1    Saitoh, T.2    Park, C.-H.3    Shen, Z.-X.4    Villella, P.5    Hamada, N.6    Moritomo, Y.7    Tokura, Y.8
  • 39
    • 0030970133 scopus 로고    scopus 로고
    • More information about "correlated polarons," which can also be called charge-ordered nanoclusters, and neutron-scattering results showing the coexistence of FM and AF tendencies above the FM critical temperature can be found in Chap. 19 of Ref.. See also NATUAS 0028-0836 10.1038/386256a0
    • More information about "correlated polarons," which can also be called charge-ordered nanoclusters, and neutron-scattering results showing the coexistence of FM and AF tendencies above the FM critical temperature can be found in Chap. 19 of Ref.. See also J. M. Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. García, A. del Moral, and Z. Arnold, Nature (London) NATUAS 0028-0836 10.1038/386256a0 386, 256 (1997)
    • (1997) Nature (London) , vol.386 , pp. 256
    • Teresa, J.M.1    Ibarra, M.R.2    Algarabel, P.A.3    Ritter, C.4    Marquina, C.5    Blasco, J.6    García, J.7    Del Moral, A.8    Arnold, Z.9
  • 41
    • 0000188391 scopus 로고    scopus 로고
    • The important role of JAF was discussed in PRBMDO 0163-1829 10.1103/PhysRevB.58.6403
    • The important role of JAF was discussed in S. Yunoki and A. Moreo, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.58.6403 58, 6403 (1998)
    • (1998) Phys. Rev. B , vol.58 , pp. 6403
    • Yunoki, S.1    Moreo, A.2
  • 44
    • 19544381865 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.70.064428
    • C. Şen, G. Alvarez, and E. Dagotto, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.70.064428 70, 064428 (2004).
    • (2004) Phys. Rev. B , vol.70 , pp. 064428
    • Şen, C.1    Alvarez, G.2    Dagotto, E.3
  • 45
    • 46049119056 scopus 로고    scopus 로고
    • For instance, see Figs. 1, 3, and 6(a) of Ref., and references therein.
    • For instance, see Figs. 1, 3, and 6(a) of Ref., and references therein.
  • 46
    • 0033116512 scopus 로고    scopus 로고
    • CPHCBZ 0010-4655 10.1016/S0010-4655(99)00206-4
    • J. A. Vergés, Comput. Phys. Commun. CPHCBZ 0010-4655 10.1016/S0010-4655(99)00206-4 118, 71 (1999), and references therein.
    • (1999) Comput. Phys. Commun. , vol.118 , pp. 71
    • Vergés, J.A.1
  • 47
    • 46049109366 scopus 로고    scopus 로고
    • In this work we exclusively work within 2D although a three-dimensional (3D) system is closer to the real material. It is true that there is no finite temperature phase transition in 2D systems in the thermodynamic limit. However, for the finite systems we studied in this work, when lowering the temperature, the correlation length increases and can be much larger than the system size. Then one does see phenomena similar to a phase transition in the finite system. Previous studies have already shown that both 2D and 3D finite systems give similar behavior in the CMR regime. See Refs. and references therein. Based on these arguments, we find that working in 2D reduces a lot of computational effort without changing the physical picture in the CMR regime.
    • In this work we exclusively work within 2D although a three-dimensional (3D) system is closer to the real material. It is true that there is no finite temperature phase transition in 2D systems in the thermodynamic limit. However, for the finite systems we studied in this work, when lowering the temperature, the correlation length increases and can be much larger than the system size. Then one does see phenomena similar to a phase transition in the finite system. Previous studies have already shown that both 2D and 3D finite systems give similar behavior in the CMR regime. See Refs. and references therein. Based on these arguments, we find that working in 2D reduces a lot of computational effort without changing the physical picture in the CMR regime.
  • 48
    • 46049120283 scopus 로고    scopus 로고
    • Further increasing the value of JAF, a charge disordered G-type antiferromagnetic (AFM) state definitely appears as the ground state. However, the AF/CO state [illustrated in Fig. 1] appears as the groundstate at intermediate JAF values, as shown in Fig. 1 of Ref.. The G-type AFM state is then not the state competing with the FM state to give the CMR effect. It is irrelevant to the CMR effect discussed throughout this paper. Therefore, we will not discuss this G-type AFM state and focus only on the competiting FM and AF/CO states in this paper.
    • Further increasing the value of JAF, a charge disordered G-type antiferromagnetic (AFM) state definitely appears as the ground state. However, the AF/CO state [illustrated in Fig. 1] appears as the groundstate at intermediate JAF values, as shown in Fig. 1 of Ref.. The G-type AFM state is then not the state competing with the FM state to give the CMR effect. It is irrelevant to the CMR effect discussed throughout this paper. Therefore, we will not discuss this G-type AFM state and focus only on the competiting FM and AF/CO states in this paper.
  • 49
    • 46049092608 scopus 로고    scopus 로고
    • According to Ref., the transition should turn into first order when the strength of quenched disorder exceeds a certain critical value. In future work, it will be interesting to study the MI transition in the model with quenched disorder and numerically check the validity of this analytical claim.
    • According to Ref., the transition should turn into first order when the strength of quenched disorder exceeds a certain critical value. In future work, it will be interesting to study the MI transition in the model with quenched disorder and numerically check the validity of this analytical claim.
  • 50
    • 46049103614 scopus 로고    scopus 로고
    • In practice, hole sites are defined as sites with the lowest (1-n) L2 local densities of states at each MC step, where n is the number of electrons in a L×L system.
    • In practice, hole sites are defined as sites with the lowest (1-n) L2 local densities of states at each MC step, where n is the number of electrons in a L×L system.
  • 51
    • 46049111248 scopus 로고    scopus 로고
    • If the MC evolution were carried out using nonlocal updates (using, e.g., cluster updates), then the analogy between the real system and the MC evolution is lost.
    • If the MC evolution were carried out using nonlocal updates (using, e.g., cluster updates), then the analogy between the real system and the MC evolution is lost.
  • 52
    • 0001195476 scopus 로고    scopus 로고
    • The presence of glassy states in manganites has been discussed in a variety of contexts already. See, for instance, PRBMDO 0163-1829 10.1103/PhysRevB.63.144419
    • The presence of glassy states in manganites has been discussed in a variety of contexts already. See, for instance, F. Parisi, P. Levy, L. Ghivelder, G. Polla, and D. Vega, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.63.144419 63, 144419 (2001)
    • (2001) Phys. Rev. B , vol.63 , pp. 144419
    • Parisi, F.1    Levy, P.2    Ghivelder, L.3    Polla, G.4    Vega, D.5
  • 57
    • 0344036306 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.91.167204
    • Y. Motome, N. Furukawa, and N. Nagaosa, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.91.167204 91, 167204 (2003). More information about glassy behavior in manganites can be found in Chap. 13 of Ref..
    • (2003) Phys. Rev. Lett. , vol.91 , pp. 167204
    • Motome, Y.1    Furukawa, N.2    Nagaosa, N.3
  • 58
    • 46049116894 scopus 로고    scopus 로고
    • The simulation is performed at T/t=0.01 with JAF =0.0325 and λ=1.2, where a metallic FM state is finally stabilized. However, in this simulation the initial configuration is prepared by taking the final configuration of another long MC simulation in the AF/CO state (with JAF =0.05, λ=1.2, and T/t=0.01).
    • The simulation is performed at T/t=0.01 with JAF =0.0325 and λ=1.2, where a metallic FM state is finally stabilized. However, in this simulation the initial configuration is prepared by taking the final configuration of another long MC simulation in the AF/CO state (with JAF =0.05, λ=1.2, and T/t=0.01).
  • 59
    • 2842556347 scopus 로고
    • We have to emphasize that usually there is no one-to-one correspondence between the MC-time evolution and the time evolution in real systems. (See the discussion in the beginning of Sec. 3 and the references therein.) However, we do expect some analogy between these two-time evolutions. Actually, both the quantities measured during MC and those measured experimentally are time averages along a trajectory in phase space. In MC, the trajectory is defined only in configuration space and the jumping between two adjacent configurations is via a purely random process. On the other hand, in real systems, the trajectory is defined in configuration-momentum space and the evolution is realized by exchanging momenta among particles. The time evolution in real systems, thus, follows a motion of equation
    • We have to emphasize that usually there is no one-to-one correspondence between the MC-time evolution and the time evolution in real systems. (See the discussion in the beginning of Sec. 3 and the references therein.) However, we do expect some analogy between these two-time evolutions. Actually, both the quantities measured during MC and those measured experimentally are time averages along a trajectory in phase space. In MC, the trajectory is defined only in configuration space and the jumping between two adjacent configurations is via a purely random process. On the other hand, in real systems, the trajectory is defined in configuration-momentum space and the evolution is realized by exchanging momenta among particles. The time evolution in real systems, thus, follows a motion of equation. Interestingly, in statistical systems where thermal fluctuations cannot be neglected, the equation of motion is usually a stochastic one. See, for example, K. Binder, in Monte Carlo Methods in Statistical Physics, Topics in Current Physics Vol. 7, 2nd ed., edited by, K. Binder, (Springer, Berlin, 1986). This shows that even in the real statistical systems, the time evolution is connected with some random process. Hence, the MC can be looked as a simplified model for the real system: it just integrates out the momentum degrees of freedom but keeps the stochastic nature of the time evolution. Regarding this, it is reasonable to compare the MC-time evolution with the one in the real systems. We note that the above idea has been generally accepted in the MC studies of spin glasses both in and far from thermal equilibrium.
    • (1986) Monte Carlo Methods in Statistical Physics , vol.7
    • Binder, K.1
  • 60
    • 46049094013 scopus 로고    scopus 로고
    • See, for instance arXiv:0804.1471 (unpublished);
    • See, for instance, F. Belletti, arXiv:0804.1471 (unpublished)
    • Belletti, F.1
  • 62
    • 46049100047 scopus 로고    scopus 로고
    • arXiv:0707.2714
    • H. Horner, arXiv:0707.2714, J. Phys. A (to be published)
    • J. Phys. a
    • Horner, H.1
  • 63
    • 29644437312 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.72.104407
    • O. V. Billoni, S. A. Cannas, and F. A. Tamarit, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.72.104407 72, 104407 (2005)
    • (2005) Phys. Rev. B , vol.72 , pp. 104407
    • Billoni, O.V.1    Cannas, S.A.2    Tamarit, F.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.