메뉴 건너뛰기




Volumn 42, Issue 1, 2008, Pages 99-111

Empirical Markov Chain Monte Carlo Bayesian analysis of fMRI data

Author keywords

Activation inference; fMRI; GLM; MCMC Bayesian approach; Variational Bayes

Indexed keywords

ALGORITHM; ARTICLE; BAYES THEOREM; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HUMAN; MONTE CARLO METHOD; NEUROIMAGING; NUCLEAR MAGNETIC RESONANCE IMAGING; PRIORITY JOURNAL; PROBABILITY; TASK PERFORMANCE;

EID: 45849107954     PISSN: 10538119     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2008.04.235     Document Type: Article
Times cited : (9)

References (58)
  • 1
    • 0034392041 scopus 로고    scopus 로고
    • On excursion sets, tube formulae, and maxima of random fields, (special invited paper)
    • Adler R.J. On excursion sets, tube formulae, and maxima of random fields, (special invited paper). Ann. Appl. Probab. 10 (2000) 1-74
    • (2000) Ann. Appl. Probab. , vol.10 , pp. 1-74
    • Adler, R.J.1
  • 3
    • 0032417383 scopus 로고    scopus 로고
    • Statistical methods for detecting activated regions in functional MRI of the brain
    • Ardekani B.A., and Kanno I. Statistical methods for detecting activated regions in functional MRI of the brain. Magn. Reson. Imaging 16 10 (1998) 1217-1225
    • (1998) Magn. Reson. Imaging , vol.16 , Issue.10 , pp. 1217-1225
    • Ardekani, B.A.1    Kanno, I.2
  • 4
    • 1542427556 scopus 로고    scopus 로고
    • Inhomogeneous prior models for image reconstruction
    • Aykroyd R.G., and Zimeras S. Inhomogeneous prior models for image reconstruction. J. Am. Stat. Soc. 94 447 (1999) 934-946
    • (1999) J. Am. Stat. Soc. , vol.94 , Issue.447 , pp. 934-946
    • Aykroyd, R.G.1    Zimeras, S.2
  • 7
    • 0032273615 scopus 로고    scopus 로고
    • General methods for monitoring convergence of iterative simulations
    • Brooks S., and Gelman A. General methods for monitoring convergence of iterative simulations. Comput. Graph. Stat. 7 (1998) 434-455
    • (1998) Comput. Graph. Stat. , vol.7 , pp. 434-455
    • Brooks, S.1    Gelman, A.2
  • 10
    • 8744307994 scopus 로고    scopus 로고
    • Multimodal inference: understanding AIC and BIC in model selection
    • Burnham K.P., and Anderson D.R. Multimodal inference: understanding AIC and BIC in model selection. Soc. Meth. Res. 33 2 (2004) 261-304
    • (2004) Soc. Meth. Res. , vol.33 , Issue.2 , pp. 261-304
    • Burnham, K.P.1    Anderson, D.R.2
  • 11
    • 0141919482 scopus 로고    scopus 로고
    • Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment
    • Ciuciu P., Poline J.B., Marrelec G., Idier J., Pallier C., and Benali H. Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment. IEEE Trans. Med. Imag. 22 10 (2003) 1235-1251
    • (2003) IEEE Trans. Med. Imag. , vol.22 , Issue.10 , pp. 1235-1251
    • Ciuciu, P.1    Poline, J.B.2    Marrelec, G.3    Idier, J.4    Pallier, C.5    Benali, H.6
  • 12
    • 3042853378 scopus 로고    scopus 로고
    • Bayesian analysis of dynamic magnetic resonance breast images
    • de Pasquale F., Barone P., Sebastiani G., and Stander J. Bayesian analysis of dynamic magnetic resonance breast images. Appl. Stat. 53 3 (2004) 475-493
    • (2004) Appl. Stat. , vol.53 , Issue.3 , pp. 475-493
    • de Pasquale, F.1    Barone, P.2    Sebastiani, G.3    Stander, J.4
  • 13
    • 0032216613 scopus 로고    scopus 로고
    • Spatio-temporal fMRI analysis using Markov random fields
    • Descombes X., Kruggel F., and Cramon D.Y.V. Spatio-temporal fMRI analysis using Markov random fields. IEEE Trans. Med. Imag. 17 (1998) 1028-1039
    • (1998) IEEE Trans. Med. Imag. , vol.17 , pp. 1028-1039
    • Descombes, X.1    Kruggel, F.2    Cramon, D.Y.V.3
  • 14
    • 17444407013 scopus 로고    scopus 로고
    • Unsupervised learning and mapping of active brain functional MRI signals based on hidden semi-Markov event sequence models
    • Faisan S., Thoraval L., Armspach J.P., Metz-Luz M.-N., and Heitz F. Unsupervised learning and mapping of active brain functional MRI signals based on hidden semi-Markov event sequence models. IEEE Trans. Med. Imag. 24 2 (2005) 263-276
    • (2005) IEEE Trans. Med. Imag. , vol.24 , Issue.2 , pp. 263-276
    • Faisan, S.1    Thoraval, L.2    Armspach, J.P.3    Metz-Luz, M.-N.4    Heitz, F.5
  • 15
    • 0344121167 scopus 로고    scopus 로고
    • Functional topography of the secondary somatosensory cortex for nonpainful and painful stimuli: an fMRI study
    • Ferretti A., Babiloni C., Gratta C.D., Caulo M., Tartaro A., Bonomo L., Rossini P., and Romani G. Functional topography of the secondary somatosensory cortex for nonpainful and painful stimuli: an fMRI study. Neuroimage 20 (2003) 1625-1638
    • (2003) Neuroimage , vol.20 , pp. 1625-1638
    • Ferretti, A.1    Babiloni, C.2    Gratta, C.D.3    Caulo, M.4    Tartaro, A.5    Bonomo, L.6    Rossini, P.7    Romani, G.8
  • 16
    • 33947179549 scopus 로고    scopus 로고
    • Bayesian fMRI data analysis with sparse spatial basis function priors
    • Flandin G., and Penny W. Bayesian fMRI data analysis with sparse spatial basis function priors. Neuroimage 34 (2007) 1108-1125
    • (2007) Neuroimage , vol.34 , pp. 1108-1125
    • Flandin, G.1    Penny, W.2
  • 18
    • 0031975318 scopus 로고    scopus 로고
    • Probabilistic analysis of functional magnetic resonance imaging data
    • Frank L.R., Buxton R.B., and Wong E.C. Probabilistic analysis of functional magnetic resonance imaging data. MRM 39 (1998) 132-148
    • (1998) MRM , vol.39 , pp. 132-148
    • Frank, L.R.1    Buxton, R.B.2    Wong, E.C.3
  • 19
    • 2942614880 scopus 로고    scopus 로고
    • Detection and detrending in fMRI data analysis
    • Friman O., Borga M., Lundberg P., and Knutsson H. Detection and detrending in fMRI data analysis. Neuroimage 22 2 (2004) 645-655
    • (2004) Neuroimage , vol.22 , Issue.2 , pp. 645-655
    • Friman, O.1    Borga, M.2    Lundberg, P.3    Knutsson, H.4
  • 20
    • 4344705249 scopus 로고
    • Statistical parametric maps in functional imaging: a general linear model approach
    • Friston K.J. Statistical parametric maps in functional imaging: a general linear model approach. Hum. Brain Mapp 2 (1994) 189-210
    • (1994) Hum. Brain Mapp , vol.2 , pp. 189-210
    • Friston, K.J.1
  • 24
    • 0002200424 scopus 로고
    • Statistical methods for tomographic image reconstruction
    • Geman S., and McClure D. Statistical methods for tomographic image reconstruction. Bull. Int. Stat. Inst. LII 4 (1987) 5-21
    • (1987) Bull. Int. Stat. Inst. , vol.LII , Issue.4 , pp. 5-21
    • Geman, S.1    McClure, D.2
  • 25
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequence (with discussion)
    • Gelman A., and Rubin D. Inference from iterative simulation using multiple sequence (with discussion). Stat. Sci. 7 (1992) 457-511
    • (1992) Stat. Sci. , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.2
  • 26
    • 0000954353 scopus 로고    scopus 로고
    • Efficient metropolis jumping rules
    • Gelman A., Roberts G., and Gilks W. Efficient metropolis jumping rules. OUP 5 (1996)
    • (1996) OUP , vol.5
    • Gelman, A.1    Roberts, G.2    Gilks, W.3
  • 28
    • 0033211906 scopus 로고    scopus 로고
    • The Swendsen-Wang process does not always mix rapidly
    • Gore V.K., and Jerrum M.R. The Swendsen-Wang process does not always mix rapidly. J. Stat. Phys. 97 1-2 (1999) 67-86
    • (1999) J. Stat. Phys. , vol.97 , Issue.1-2 , pp. 67-86
    • Gore, V.K.1    Jerrum, M.R.2
  • 29
    • 0034973147 scopus 로고    scopus 로고
    • Bayesian Modeling of the hemodynamic response function in BOLD fMRI
    • Gossl C., Fahrmeir L., and Auer P. Bayesian Modeling of the hemodynamic response function in BOLD fMRI. Neuroimage 14 (2001) 140-148
    • (2001) Neuroimage , vol.14 , pp. 140-148
    • Gossl, C.1    Fahrmeir, L.2    Auer, P.3
  • 30
    • 0025404969 scopus 로고
    • Bayesian reconstructions from emission tomography data using a modified EM algorithm
    • Green P.J. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imag. 9 (1990) 84-93
    • (1990) IEEE Trans. Med. Imag. , vol.9 , pp. 84-93
    • Green, P.J.1
  • 31
    • 0033647016 scopus 로고    scopus 로고
    • Spatial mixture modeling of fMRI data
    • Hartvig N., and Jensen J. Spatial mixture modeling of fMRI data. Hum. Brain Mapp. 11 4 (2000) 233-248
    • (2000) Hum. Brain Mapp. , vol.11 , Issue.4 , pp. 233-248
    • Hartvig, N.1    Jensen, J.2
  • 32
    • 0036143741 scopus 로고    scopus 로고
    • Face repetition effects in implicit and explicit memory tests as measured by fMRI
    • Henson R.N.A., Shallice T., Gorno-Tempini M.L., and Dolan R.J. Face repetition effects in implicit and explicit memory tests as measured by fMRI. Cereb. Cortex 12 (2001) 178-186
    • (2001) Cereb. Cortex , vol.12 , pp. 178-186
    • Henson, R.N.A.1    Shallice, T.2    Gorno-Tempini, M.L.3    Dolan, R.J.4
  • 33
    • 33744994559 scopus 로고    scopus 로고
    • Transient suppression of ipsilateral primary somatosensory cortex during tactile finger stimulation
    • Hlushchuck Y., and Hari R. Transient suppression of ipsilateral primary somatosensory cortex during tactile finger stimulation. J. Neurosci. 26 21 (2006) 5819-5824
    • (2006) J. Neurosci. , vol.26 , Issue.21 , pp. 5819-5824
    • Hlushchuck, Y.1    Hari, R.2
  • 36
    • 0033233281 scopus 로고    scopus 로고
    • Application of Bayesian inference to fMRI data analysis
    • Kershaw J., Ardekani B.A., and Kanno I. Application of Bayesian inference to fMRI data analysis. IEEE Trans. Med. Imag. 18 12 (1999) 1138-1153
    • (1999) IEEE Trans. Med. Imag. , vol.18 , Issue.12 , pp. 1138-1153
    • Kershaw, J.1    Ardekani, B.A.2    Kanno, I.3
  • 37
    • 29344433832 scopus 로고    scopus 로고
    • A sparse Bayesian method for determination of flexible design matrix for fMRI data analysis
    • Luo H., and Puthusserypady S. A sparse Bayesian method for determination of flexible design matrix for fMRI data analysis. IEEE Trans. Circuit Syst. 52 12 (2005) 2699-2705
    • (2005) IEEE Trans. Circuit Syst. , vol.52 , Issue.12 , pp. 2699-2705
    • Luo, H.1    Puthusserypady, S.2
  • 38
    • 0004272772 scopus 로고    scopus 로고
    • Cambridge University Press Available from http://www.inference.phy.cam.ac.uk/mackay/itila/
    • MacKay D.J.C. Information Theory, Inference, and Learning Algorithms (2003), Cambridge University Press. http://www.inference.phy.cam.ac.uk/mackay/itila/ Available from http://www.inference.phy.cam.ac.uk/mackay/itila/
    • (2003) Information Theory, Inference, and Learning Algorithms
    • MacKay, D.J.C.1
  • 39
    • 27644451565 scopus 로고    scopus 로고
    • Joint detection estimation of brain activity in functional MRI: a multichannel deconvolution solution
    • Makni S., Ciuciu P., Idier J., and Poline J. Joint detection estimation of brain activity in functional MRI: a multichannel deconvolution solution. IEEE Trans. Signal Process 53 9 (2005) 3488-3502
    • (2005) IEEE Trans. Signal Process , vol.53 , Issue.9 , pp. 3488-3502
    • Makni, S.1    Ciuciu, P.2    Idier, J.3    Poline, J.4
  • 40
    • 33644899039 scopus 로고
    • Simulated Tempering: a new Monte Carlo scheme
    • Marinari E., and Parisi G. Simulated Tempering: a new Monte Carlo scheme. Europhys. Lett. 19 (1992) 451-458
    • (1992) Europhys. Lett. , vol.19 , pp. 451-458
    • Marinari, E.1    Parisi, G.2
  • 41
    • 0142010692 scopus 로고    scopus 로고
    • Bayesian second-level analysis of functional magnetic resonance images
    • Neumann J., and Lohmann G. Bayesian second-level analysis of functional magnetic resonance images. NeuroImage 20 (2003) 1346-1355
    • (2003) NeuroImage , vol.20 , pp. 1346-1355
    • Neumann, J.1    Lohmann, G.2
  • 42
    • 33947121763 scopus 로고    scopus 로고
    • Hierarchical Bayesian estimates of distributed MEG sources: theoretical aspects and comparison of variational and MCMC methods
    • Nummenmaa A., Auranen T., Hamalainen M.S., Jaaskelainen I.P., Lampinen J., Sams M., and Vehtari A. Hierarchical Bayesian estimates of distributed MEG sources: theoretical aspects and comparison of variational and MCMC methods. NeuroImage 35 (2007) 669-685
    • (2007) NeuroImage , vol.35 , pp. 669-685
    • Nummenmaa, A.1    Auranen, T.2    Hamalainen, M.S.3    Jaaskelainen, I.P.4    Lampinen, J.5    Sams, M.6    Vehtari, A.7
  • 43
    • 16244387927 scopus 로고    scopus 로고
    • Bayesian fMRI time series analysis with spatial priors
    • Penny W.D., Trujillo-Barreto N.J., and Friston K.J. Bayesian fMRI time series analysis with spatial priors. NeuroImage 24 (2005) 350-362
    • (2005) NeuroImage , vol.24 , pp. 350-362
    • Penny, W.D.1    Trujillo-Barreto, N.J.2    Friston, K.J.3
  • 44
    • 34047230547 scopus 로고    scopus 로고
    • Bayesian comparison of spatially regularised general linear models
    • Penny W.D., Flandin G., and Trujillo-Barreto N. Bayesian comparison of spatially regularised general linear models. Hum. Brain Mapp. 28 4 (2007) 275-293
    • (2007) Hum. Brain Mapp. , vol.28 , Issue.4 , pp. 275-293
    • Penny, W.D.1    Flandin, G.2    Trujillo-Barreto, N.3
  • 45
    • 0025465145 scopus 로고
    • Scale-space and edge detection using anisotropic diffusion
    • Perona P., and Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. patt. Anal. and Mach. Intell. 12 7 (1990) 629-639
    • (1990) IEEE Trans. patt. Anal. and Mach. Intell. , vol.12 , Issue.7 , pp. 629-639
    • Perona, P.1    Malik, J.2
  • 46
    • 0031079260 scopus 로고    scopus 로고
    • Combining spatial extent and peak intensity to test for activations in functional imaging
    • Poline J.B., Worsley K.J., Evans A.C., and Friston K.J. Combining spatial extent and peak intensity to test for activations in functional imaging. NeuroImage 5 (1997) 83-96
    • (1997) NeuroImage , vol.5 , pp. 83-96
    • Poline, J.B.1    Worsley, K.J.2    Evans, A.C.3    Friston, K.J.4
  • 47
    • 34249029761 scopus 로고    scopus 로고
    • Spatial Bayesian variable selection with application to functional magnetic resonance imaging
    • Smith M., and Fahrmeir L. Spatial Bayesian variable selection with application to functional magnetic resonance imaging. JASA 15 (2007) 417-431
    • (2007) JASA , vol.15 , pp. 417-431
    • Smith, M.1    Fahrmeir, L.2
  • 48
    • 0142011000 scopus 로고    scopus 로고
    • Assessing brain activity through spatial Bayesian variable selection
    • Smith M., Putz B., Auer D., and Fahrmeir L. Assessing brain activity through spatial Bayesian variable selection. Neuroimage 20 2 (2003) 802-815
    • (2003) Neuroimage , vol.20 , Issue.2 , pp. 802-815
    • Smith, M.1    Putz, B.2    Auer, D.3    Fahrmeir, L.4
  • 49
    • 33645565446 scopus 로고    scopus 로고
    • Estimation of binary Markov random fields using Markov chain Monte Carlo
    • Smith M., and Smith D. Estimation of binary Markov random fields using Markov chain Monte Carlo. J. Comput. Graph. Stat. 15 1 (2006) 207-227
    • (2006) J. Comput. Graph. Stat. , vol.15 , Issue.1 , pp. 207-227
    • Smith, M.1    Smith, D.2
  • 50
    • 33747349191 scopus 로고
    • Nonuniversal critical dynamics in Monte Carlo simulations
    • Swendsen R.H., and Wang J.S. Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58 (1987) 86-88
    • (1987) Phys. Rev. Lett. , vol.58 , pp. 86-88
    • Swendsen, R.H.1    Wang, J.S.2
  • 52
    • 0005736062 scopus 로고
    • Modelling data from single photon emission computed tomography
    • Weir I.S., and Green P.J. Modelling data from single photon emission computed tomography. Stat. Images 2 (1994)
    • (1994) Stat. Images , vol.2
    • Weir, I.S.1    Green, P.J.2
  • 55
    • 0242468641 scopus 로고    scopus 로고
    • Detecting activation in fMRI data
    • Worsley K.J. Detecting activation in fMRI data. Stat. Methods Med. Res. 12 (2003) 401-418
    • (2003) Stat. Methods Med. Res. , vol.12 , pp. 401-418
    • Worsley, K.J.1
  • 56
    • 19344364723 scopus 로고    scopus 로고
    • Spatial smoothing of autocorrelations to control the degrees of freedom in fMRI analysis
    • Worsley K.J. Spatial smoothing of autocorrelations to control the degrees of freedom in fMRI analysis. NeuroImage 26 (2005) 635-641
    • (2005) NeuroImage , vol.26 , pp. 635-641
    • Worsley, K.J.1
  • 57
    • 30344484582 scopus 로고    scopus 로고
    • Detecting fMRI activation allowing for unknown latency of the hemodynamic response
    • Worsley K.J., and Taylor J.E. Detecting fMRI activation allowing for unknown latency of the hemodynamic response. NeuroImage 29 (2006) 649-654
    • (2006) NeuroImage , vol.29 , pp. 649-654
    • Worsley, K.J.1    Taylor, J.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.