메뉴 건너뛰기




Volumn 20, Issue 3, 2008, Pages 207-228

Approximating data with weighted smoothing splines

Author keywords

Confidence region; Non parametric regression; Regularization; Smoothing splines

Indexed keywords


EID: 45849088418     PISSN: 10485252     EISSN: 10290311     Source Type: Journal    
DOI: 10.1080/10485250801948625     Document Type: Article
Times cited : (17)

References (36)
  • 1
    • 0003241881 scopus 로고
    • Spline models for observational data
    • of, Society for Industrial and Applied Mathematics SIAM, Philadelphia, PA
    • P. Green and B. Silverman, Spline models for observational data, vol. 59 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990.
    • (1990) CBMS-NSF Regional Conference Series in Applied Mathematics , vol.59
    • Green, P.1    Silverman, B.2
  • 2
    • 0041456681 scopus 로고
    • Non-parametric Regression and Generalized Linear Models: A Roughness Penalty Approach
    • Chapman and Hall, London
    • _, Non-parametric Regression and Generalized Linear Models: A Roughness Penalty Approach, Number 58 in Monographs on Statistics and Applied Probabality, Chapman and Hall, London, 1994.
    • (1994) Monographs on Statistics and Applied Probabality , Issue.58
    • Green, P.1    Silverman, B.2
  • 4
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation
    • P. Craven and G. Wahba, Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation, Numer. Math. 31(4) (1978), pp. 377-403.
    • (1978) Numer. Math , vol.31 , Issue.4 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 5
    • 0000608177 scopus 로고
    • A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem
    • G. Wahba, A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem, Ann. Statist. 13(4) (1985), pp. 1378-1402.
    • (1985) Ann. Statist , vol.13 , Issue.4 , pp. 1378-1402
    • Wahba, G.1
  • 6
    • 0031483603 scopus 로고    scopus 로고
    • Hybrid adaptive splines
    • Z. Luo and G. Wahba, Hybrid adaptive splines, J. Am. Statist. Asso. 92 (1997), pp. 107-116.
    • (1997) J. Am. Statist. Asso , vol.92 , pp. 107-116
    • Luo, Z.1    Wahba, G.2
  • 8
    • 0034400642 scopus 로고    scopus 로고
    • Spacially-adaptive penalties for spline fitting,Aust. N.Z
    • D. Ruppert and R. Carroll, Spacially-adaptive penalties for spline fitting,Aust. N.Z. J. Statist. 42 (2000), pp. 205-223.
    • (2000) J. Statist , vol.42 , pp. 205-223
    • Ruppert, D.1    Carroll, R.2
  • 9
    • 1842665179 scopus 로고    scopus 로고
    • Spatially adaptive regression splines and accurate knot selection
    • S. Zhou and X. Shen, Spatially adaptive regression splines and accurate knot selection, J. Am. Statist. Assoc. 96 (2001), pp. 247-259.
    • (2001) J. Am. Statist. Assoc , vol.96 , pp. 247-259
    • Zhou, S.1    Shen, X.2
  • 10
    • 0010045457 scopus 로고    scopus 로고
    • Bayesian curve-fitting with free-knot splines
    • I. DiMatteo, C.R. Genovese, and R.E. Kass, Bayesian curve-fitting with free-knot splines, Biometrika 88(4) (2001), pp. 1055-1071.
    • (2001) Biometrika , vol.88 , Issue.4 , pp. 1055-1071
    • DiMatteo, I.1    Genovese, C.R.2    Kass, R.E.3
  • 11
    • 0036751405 scopus 로고    scopus 로고
    • Adaptrive splines and genetic algorithms
    • J. Pittman, Adaptrive splines and genetic algorithms, J. Comput. Graph. Statist. 11(3) (2002), pp. 615-638.
    • (2002) J. Comput. Graph. Statist , vol.11 , Issue.3 , pp. 615-638
    • Pittman, J.1
  • 12
    • 13844262338 scopus 로고    scopus 로고
    • Bayesian mixture of splines for spatially adaptive non-parametric regression
    • S.A. Wood, W. Jiang, and M. Tanner, Bayesian mixture of splines for spatially adaptive non-parametric regression, Biometrika 89(3) (2002), pp. 513-528.
    • (2002) Biometrika , vol.89 , Issue.3 , pp. 513-528
    • Wood, S.A.1    Jiang, W.2    Tanner, M.3
  • 14
    • 45849153555 scopus 로고    scopus 로고
    • S. Miyata and X. Shen, Free-knot spines and adaptive knot selection, J. Japanese Statist. Soc. 35(2) (2005), pp. 303-324.
    • S. Miyata and X. Shen, Free-knot spines and adaptive knot selection, J. Japanese Statist. Soc. 35(2) (2005), pp. 303-324.
  • 15
    • 33644977319 scopus 로고    scopus 로고
    • Spatially adaptive smoothing splines
    • A. Pintore, P. Speckman, and C.C. Holmes, Spatially adaptive smoothing splines, Biometrika 93 (2006), pp. 113-125.
    • (2006) Biometrika , vol.93 , pp. 113-125
    • Pintore, A.1    Speckman, P.2    Holmes, C.C.3
  • 16
    • 22944438248 scopus 로고    scopus 로고
    • Densities, spectral densities and modality
    • P.L. Davies and A. Kovac, Densities, spectral densities and modality, Ann. Stat. 32(3) (2004), pp. 1093-1136.
    • (2004) Ann. Stat , vol.32 , Issue.3 , pp. 1093-1136
    • Davies, P.L.1    Kovac, A.2
  • 18
    • 0035592604 scopus 로고    scopus 로고
    • Multiscale testing of qualitative hypotheses
    • L. Dümbgen and V. Spokoiny, Multiscale testing of qualitative hypotheses, Ann. Stat. 29(1) (2001), pp. 124-152.
    • (2001) Ann. Stat , vol.29 , Issue.1 , pp. 124-152
    • Dümbgen, L.1    Spokoiny, V.2
  • 20
    • 38949086568 scopus 로고    scopus 로고
    • Non-parametric regression as an example of model choice
    • P.L. Davies, U. Gather, and H.Weinert, Non-parametric regression as an example of model choice, Commun. Stat. Simul. Comput. 37(2) (2008a), pp. 274-289.
    • (2008) Commun. Stat. Simul. Comput , vol.37 , Issue.2 , pp. 274-289
    • Davies, P.L.1    Gather, U.2    Weinert, H.3
  • 21
    • 0035608644 scopus 로고    scopus 로고
    • Local extremes, runs, strings and multiresolution (with discussion)
    • P. Davies and A. Kovac, Local extremes, runs, strings and multiresolution (with discussion), Ann. Stat. 29(1) (2001), pp. 1-65.
    • (2001) Ann. Stat , vol.29 , Issue.1 , pp. 1-65
    • Davies, P.1    Kovac, A.2
  • 22
    • 0040276000 scopus 로고
    • Honest confidence regions for non-parametric regression
    • K.-C. Li, Honest confidence regions for non-parametric regression, Ann. Statist. 17(3) (1989), pp. 1001-1008.
    • (1989) Ann. Statist , vol.17 , Issue.3 , pp. 1001-1008
    • Li, K.-C.1
  • 24
    • 3042530624 scopus 로고    scopus 로고
    • Optimal confidence bands for shape-restricted curves
    • L. Dümbgen, Optimal confidence bands for shape-restricted curves, Bernoulli 9(3) (2003), pp. 423-449.
    • (2003) Bernoulli , vol.9 , Issue.3 , pp. 423-449
    • Dümbgen, L.1
  • 25
    • 45849091579 scopus 로고    scopus 로고
    • _, Confidence bands for convex median curves using sign-tests, (Asymptotics: Particles, Processes and Inverse Problems,) in E. Cator et al. eds., 55, of IMS Lecture Notes - Monograph Series 55, 2007, IMS, Haward, USA, pp. 85-100.
    • _, Confidence bands for convex median curves using sign-tests, (Asymptotics: Particles, Processes and Inverse Problems,) in E. Cator et al. eds., vol. 55, of IMS Lecture Notes - Monograph Series 55, 2007, IMS, Haward, USA, pp. 85-100.
  • 26
    • 3042572506 scopus 로고    scopus 로고
    • Confidence bands for isotonic median curves using sign-tests
    • L. Dümbgen and R. Johns, Confidence bands for isotonic median curves using sign-tests, J. Comput. Graph. Statist. 13(2) (2004), pp. 519-533.
    • (2004) J. Comput. Graph. Statist , vol.13 , Issue.2 , pp. 519-533
    • Dümbgen, L.1    Johns, R.2
  • 29
    • 0001047094 scopus 로고
    • Fast computation of fully automated log-density and log-hazard estimators
    • F. O'Sullivan, Fast computation of fully automated log-density and log-hazard estimators, SIAM J. Sci. Statist. Comput. 9(2) (1988), pp. 363-379.
    • (1988) SIAM J. Sci. Statist. Comput , vol.9 , Issue.2 , pp. 363-379
    • O'Sullivan, F.1
  • 30
    • 84950459514 scopus 로고
    • Adapting to unknown smoothness via wavelet shrinkage
    • D.L. Donoho and I.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage, J. Am. Stat. Assoc. 90(432) (1995), pp. 1200-1224.
    • (1995) J. Am. Stat. Assoc , vol.90 , Issue.432 , pp. 1200-1224
    • Donoho, D.L.1    Johnstone, I.M.2
  • 31
    • 45849094130 scopus 로고    scopus 로고
    • Long range financial data and model choice
    • Tech. Rep. 21/06, Collaborative Research Centre 475, Department of Statistics, University of Dortmund, Dortmund, Germany
    • P.L. Davies, Long range financial data and model choice, Tech. Rep. 21/06, Collaborative Research Centre 475, Department of Statistics, University of Dortmund, Dortmund, Germany.
    • Davies, P.L.1
  • 32
    • 45849119156 scopus 로고    scopus 로고
    • Extensions of smoothing via taut strings
    • Tech. Rep, Institut für mathematische Statistik und Versicherungslehre, University of Bern, Switzerland
    • L. Dümbgen and A. Kovac, Extensions of smoothing via taut strings, Tech. Rep., Institut für mathematische Statistik und Versicherungslehre, University of Bern, Switzerland, 2005.
    • (2005)
    • Dümbgen, L.1    Kovac, A.2
  • 33
    • 0022060167 scopus 로고
    • The breakdown points of the mean combined with some rejection rules
    • F.R. Hampel, The breakdown points of the mean combined with some rejection rules, Technometrics 27 (1985), pp. 95-107.
    • (1985) Technometrics , vol.27 , pp. 95-107
    • Hampel, F.R.1
  • 34
    • 41449119247 scopus 로고    scopus 로고
    • Efficient moment computation over polygonal domains with an application to rapid wedgelet approximation
    • F. Friedrich et al., Efficient moment computation over polygonal domains with an application to rapid wedgelet approximation, SIAM J. Sci. Comput. 29(2) (2007), pp. 842-863.
    • (2007) SIAM J. Sci. Comput , vol.29 , Issue.2 , pp. 842-863
    • Friedrich, F.1
  • 35
    • 0002970892 scopus 로고
    • Smoothing data under monotonicity constraints: Existence, characterization and convergence rates
    • F.I. Utreras, Smoothing data under monotonicity constraints: Existence, characterization and convergence rates, Zeitung für Numerische Mathematik 47 (1983), pp. 611-625.
    • (1983) Zeitung für Numerische Mathematik , vol.47 , pp. 611-625
    • Utreras, F.I.1
  • 36
    • 38249030627 scopus 로고
    • Convergence rates for multivariate smoothing spline functions
    • F.I. Utreras, Convergence rates for multivariate smoothing spline functions, J. Approx. Theory 52 (1988), pp. 1-27.
    • (1988) J. Approx. Theory , vol.52 , pp. 1-27
    • Utreras, F.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.