메뉴 건너뛰기




Volumn 77, Issue 21, 2008, Pages

Particle-hole symmetry and the dirty boson problem

Author keywords

[No Author keywords available]

Indexed keywords


EID: 45749134673     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.77.214516     Document Type: Article
Times cited : (66)

References (78)
  • 1
    • 33744631045 scopus 로고
    • See, e.g., PRLTAO 0031-9007 10.1103/PhysRevLett.62.1694
    • See, e.g., N. Read and S. Sachdev, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.62.1694 62, 1694 (1989);
    • (1989) Phys. Rev. Lett. , vol.62 , pp. 1694
    • Read, N.1    Sachdev, S.2
  • 2
    • 0001441341 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.71.169
    • A. V. Chubukov and S. Sachdev, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.71.169 71, 169 (1993);
    • (1993) Phys. Rev. Lett. , vol.71 , pp. 169
    • Chubukov, A.V.1    Sachdev, S.2
  • 3
    • 0000805607 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.70.3147
    • J. Miller and D. A. Huse, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.70.3147 70, 3147 (1993).
    • (1993) Phys. Rev. Lett. , vol.70 , pp. 3147
    • Miller, J.1    Huse, D.A.2
  • 4
    • 84914260693 scopus 로고
    • See, e.g., PHSTER 0281-1847
    • See, e.g., J. A. Hertz, Phys. Scr., T PHSTER 0281-1847 T10, 1 (1985) and references therein.
    • (1985) Phys. Scr., T , vol.10 , pp. 1
    • Hertz, J.A.1
  • 6
    • 0000861777 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.61.1297
    • A. M. M. Pruisken, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett. 61.1297 61, 1297 (1988);
    • (1988) Phys. Rev. Lett. , vol.61 , pp. 1297
    • Pruisken, A.M.M.1
  • 8
    • 4243088396 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.62.86
    • N. Read, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.62.86 62, 86 (1989);
    • (1989) Phys. Rev. Lett. , vol.62 , pp. 86
    • Read, N.1
  • 9
    • 4243604108 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.70.1501
    • X.-G. Wen and Y.-S. Wu, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.70.1501 70, 1501 (1993).
    • (1993) Phys. Rev. Lett. , vol.70 , pp. 1501
    • Wen, X.-G.1    Wu, Y.-S.2
  • 10
    • 0040793613 scopus 로고
    • See, e.g., RMPHAT 0034-6861 10.1103/RevModPhys.57.287
    • See, e.g., P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.57.287 57, 287 (1985).
    • (1985) Rev. Mod. Phys. , vol.57 , pp. 287
    • Lee, P.A.1    Ramakrishnan, T.V.2
  • 11
    • 3342969241 scopus 로고
    • See, e.g., PRLTAO 0031-9007 10.1103/PhysRevLett.62.2180
    • See, e.g., D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.62.2180 62, 2180 (1989);
    • (1989) Phys. Rev. Lett. , vol.62 , pp. 2180
    • Haviland, D.B.1    Liu, Y.2    Goldman, A.M.3
  • 12
    • 4243686384 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.65.927
    • A. F. Hebard and M. A. Paalanen, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.65.927 65, 927 (1990);
    • (1990) Phys. Rev. Lett. , vol.65 , pp. 927
    • Hebard, A.F.1    Paalanen, M.A.2
  • 13
    • 0001484757 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.65.923
    • M. P. A. Fisher, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett. 65.923 65, 923 (1990);
    • (1990) Phys. Rev. Lett. , vol.65 , pp. 923
    • Fisher, M.P.A.1
  • 14
    • 0032209652 scopus 로고    scopus 로고
    • see also PHTOAD 0031-9228
    • see also A. M. Goldman and N. Markovic, Phys. Today PHTOAD 0031-9228 51 (11), 39 (1998), and references therein.
    • (1998) Phys. Today , vol.51 , Issue.11 , pp. 39
    • Goldman, A.M.1    Markovic, N.2
  • 17
    • 4244066733 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.75.4075
    • K. Sheshadri, H. R. Krishnamurthy, R. Pandit, and T. V. Ramakrishnan, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.75.4075 75, 4075 (1995). The mean-field approximation fails to produce a Bose glass phase except as a line separating the Mott insulating and superfluid phases. It does, however, produce a region of quasilocalized superfluid phase, with exponentially small couplings between well separated superfluid droplets, which should be the seed of the Bose glass phase, and thus cross over to the truly localized nonsuperfluid phase, when fluctuations about the mean-field ground state are taken into account.
    • (1995) Phys. Rev. Lett. , vol.75 , pp. 4075
    • Sheshadri, K.1    Krishnamurthy, H.R.2    Pandit, R.3    Ramakrishnan, T.V.4
  • 18
    • 84913051924 scopus 로고
    • EULEEJ 0295-5075 10.1209/0295-5075/24/7/007
    • J. K. Freericks and H. Monien, Europhys. Lett. EULEEJ 0295-5075 10.1209/0295-5075/24/7/007 24, 545 (1994);
    • (1994) Europhys. Lett. , vol.24 , pp. 545
    • Freericks, J.K.1    Monien, H.2
  • 19
    • 0001202631 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.53.2691
    • J. K. Freericks and H. Monien, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.53.2691 53, 2691 (1996);
    • (1996) Phys. Rev. B , vol.53 , pp. 2691
    • Freericks, J.K.1    Monien, H.2
  • 20
    • 0001523522 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.60.2357
    • M. Niemeyer, J. K. Freericks, and H. Monien, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.60.2357 60, 2357 (1999).
    • (1999) Phys. Rev. B , vol.60 , pp. 2357
    • Niemeyer, M.1    Freericks, J.K.2    Monien, H.3
  • 21
    • 4243740512 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.73.6
    • Y. Tu and P. B. Weichman, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.73.6 73, 6 (1994);
    • (1994) Phys. Rev. Lett. , vol.73 , pp. 6
    • Tu, Y.1    Weichman, P.B.2
  • 22
    • 0006783532 scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.49.4043
    • Y. B. Kim and X. G. Wen, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.49.4043 49, 4043 (1994);
    • (1994) Phys. Rev. B , vol.49 , pp. 4043
    • Kim, Y.B.1    Wen, X.G.2
  • 23
    • 0034895845 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.64.024517
    • M. B. Hastings, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.64.024517 64, 024517 (2001).
    • (2001) Phys. Rev. B , vol.64 , pp. 024517
    • Hastings, M.B.1
  • 24
    • 0001593287 scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.45.4855
    • L. Zhang and M. Ma, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.45. 4855 45, 4855 (1992);
    • (1992) Phys. Rev. B , vol.45 , pp. 4855
    • Zhang, L.1    Ma, M.2
  • 25
    • 0001643708 scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.46.3002
    • K. G. Singh and D. S. Rokhsar, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.46.3002 46, 3002 (1992).
    • (1992) Phys. Rev. B , vol.46 , pp. 3002
    • Singh, K.G.1    Rokhsar, D.S.2
  • 26
    • 0001219421 scopus 로고
    • Many authors have explored various models in one and two dimensions using quantum Monte Carlo techniques: See, e.g., PRLTAO 0031-9007 10.1103/PhysRevLett.66.3144
    • Many authors have explored various models in one and two dimensions using quantum Monte Carlo techniques: See, e.g., R. T. Scalettar, G. G. Batrouni, and G. T. Zimanyi, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.66.3144 66, 3144 (1991);
    • (1991) Phys. Rev. Lett. , vol.66 , pp. 3144
    • Scalettar, R.T.1    Batrouni, G.G.2    Zimanyi, G.T.3
  • 27
  • 30
    • 0038732480 scopus 로고    scopus 로고
    • PLEEE8 1063-651X 10.1103/PhysRevE.67.015701
    • F. Alet and E. S. Sørensen, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.67.015701 67, 015701 (R) (2003);
    • (2003) Phys. Rev. e , vol.67 , pp. 015701
    • Alet, F.1    Sørensen, E.S.2
  • 31
    • 1242352112 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.92.015703
    • N. Prokof'ev and B. Svistunov, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.92.015703 92, 015703 (2004).
    • (2004) Phys. Rev. Lett. , vol.92 , pp. 015703
    • Prokof'Ev, N.1    Svistunov, B.2
  • 32
    • 3643074068 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.71.2307
    • M. Makivic, N. Trivedi, and S. Ullah, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.71.2307 71, 2307 (1993).
    • (1993) Phys. Rev. Lett. , vol.71 , pp. 2307
    • Makivic, M.1    Trivedi, N.2    Ullah, S.3
  • 33
    • 7244225891 scopus 로고
    • There is, however, some argument over the interpretation of the unusual values of the exponents obtained in this work: see PRLTAO 0031-9007 10.1103/PhysRevLett.74.1038
    • There is, however, some argument over the interpretation of the unusual values of the exponents obtained in this work: see P. B. Weichman, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.74.1038 74, 1038 (1995);
    • (1995) Phys. Rev. Lett. , vol.74 , pp. 1038
    • Weichman, P.B.1
  • 34
    • 7244227424 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.74.1039
    • N. Trivedi and M. Makivic, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.74.1039 74, 1039 (1995).
    • (1995) Phys. Rev. Lett. , vol.74 , pp. 1039
    • Trivedi, N.1    Makivic, M.2
  • 35
    • 0035842211 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.87.247006
    • J.-W. Lee, M.-C. Cha, and D. Kim, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.87.247006 87, 247006 (2001);
    • (2001) Phys. Rev. Lett. , vol.87 , pp. 247006
    • Lee, J.-W.1    Cha, M.-C.2    Kim, D.3
  • 36
    • 33644552138 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.72.212515
    • J.-W. Lee and M.-C. Cha, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.72.212515 72, 212515 (2005).
    • (2005) Phys. Rev. B , vol.72 , pp. 212515
    • Lee, J.-W.1    Cha, M.-C.2
  • 38
    • 0000148254 scopus 로고
    • PYLAAG 0375-9601 10.1016/0375-9601(80)90604-0
    • S. N. Dorogovtsev, Phys. Lett. PYLAAG 0375-9601 10.1016/0375-9601(80) 90604-0 76A, 169 (1980);
    • (1980) Phys. Lett. , vol.76 , pp. 169
    • Dorogovtsev, S.N.1
  • 39
    • 0000605284 scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.26.154
    • D. Boyanovsky and J. L. Cardy, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.26.154 26, 154 (1982);
    • (1982) Phys. Rev. B , vol.26 , pp. 154
    • Boyanovsky, D.1    Cardy, J.L.2
  • 40
    • 4243231628 scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.27.6971.2
    • D. Boyanovsky and J. L. Cardy, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.27.6971.2 27, 6971 (E) (1983);
    • (1983) Phys. Rev. B , vol.27 , pp. 6971
    • Boyanovsky, D.1    Cardy, J.L.2
  • 41
    • 0012673134 scopus 로고
    • JPSOAW 0022-3719 10.1088/0022-3719/17/10/007
    • I. D. Lawrie and V. V. Prudvikov, J. Phys. C JPSOAW 0022-3719 10.1088/0022-3719/17/10/007 17, 1655 (1984).
    • (1984) J. Phys. C , vol.17 , pp. 1655
    • Lawrie, I.D.1    Prudvikov, V.V.2
  • 42
    • 0001445706 scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.40.813
    • P. B. Weichman and K. Kim, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.40.813 40, 813 (1989).
    • (1989) Phys. Rev. B , vol.40 , pp. 813
    • Weichman, P.B.1    Kim, K.2
  • 43
    • 0003451591 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.76.2977
    • R. Mukhopadhyay and P. B. Weichman, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.76.2977 76, 2977 (1996).
    • (1996) Phys. Rev. Lett. , vol.76 , pp. 2977
    • Mukhopadhyay, R.1    Weichman, P.B.2
  • 46
    • 0542371301 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.57.1303
    • I. F. Herbut, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.57.1303 57, 1303 (1998).
    • (1998) Phys. Rev. B , vol.57 , pp. 1303
    • Herbut, I.F.1
  • 47
    • 0001680728 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.58.971
    • I. F. Herbut, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.58.971 58, 971 (1998). The 1+ expansion developed here consists of computing the RG flows in one dimension, and inserting the engineering dimensions to generalize the recursion relations to higher dimensions. However, in the absence of a form for the Hamiltonian for noninteger d>1, there is presently no rigorous support for this approach.
    • (1998) Phys. Rev. B , vol.58 , pp. 971
    • Herbut, I.F.1
  • 48
    • 33646068741 scopus 로고    scopus 로고
    • Further neighbor interactions substantially increase the complexity of the phase diagram in the absence of the random site energies, i. One can, in principle, generate Mott insulating phases with arbitrary rational densities ("charge density wave" states). The superfluid transitions from these states are surprisingly complex: for a review, see PTPSEP 0375-9687 10.1143/PTPS.160.314
    • Further neighbor interactions substantially increase the complexity of the phase diagram in the absence of the random site energies, i. One can, in principle, generate Mott insulating phases with arbitrary rational densities ("charge density wave" states). The superfluid transitions from these states are surprisingly complex: for a review, see L. Balents, L. Bartosch, A. Burkov, S. Sachdev, and K. Sengupta, Prog. Theor. Phys. Suppl. PTPSEP 0375-9687 10.1143/PTPS.160.314 160, 314 (2005).
    • (2005) Prog. Theor. Phys. Suppl. , vol.160 , pp. 314
    • Balents, L.1    Bartosch, L.2    Burkov, A.3    Sachdev, S.4    Sengupta, K.5
  • 49
    • 26944456270 scopus 로고    scopus 로고
    • Generically, only the integer fillings are stable against small disorder since the fractional fillings necessarily break the lattice translation symmetry, leading to multiply degenerate ground states related by a discrete translation. It is not hard to see that arbitrarily small random i will always generate rare regions where it is energetically favorable to form two such states with a domain wall between. If one allows further neighbor hopping matrix elements, Jij, with various signs, one can also generate supersolid phases, which break both lattice translational symmetry and XY -phase symmetry, i.e., superfluid charge density waves: for some recent work, see, e.g., PRLTAO 0031-9007 10.1103/PhysRevLett.94.207202
    • Generically, only the integer fillings are stable against small disorder since the fractional fillings necessarily break the lattice translation symmetry, leading to multiply degenerate ground states related by a discrete translation. It is not hard to see that arbitrarily small random i will always generate rare regions where it is energetically favorable to form two such states with a domain wall between. If one allows further neighbor hopping matrix elements, Jij, with various signs, one can also generate supersolid phases, which break both lattice translational symmetry and XY -phase symmetry, i.e., superfluid charge density waves: for some recent work, see, e.g., P. Sengupta, L. P. Pryadko, F. Alet, M. Troyer, and G. Schmid, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.207202 94, 207202 (2005);
    • (2005) Phys. Rev. Lett. , vol.94 , pp. 207202
    • Sengupta, P.1    Pryadko, L.P.2    Alet, F.3    Troyer, M.4    Schmid, G.5
  • 50
    • 33747832245 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.97.087209
    • G. G. Batrouni, F. Hébert, and R. T. Scalettar, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.97.087209 97, 087209 (2006), and references therein.
    • (2006) Phys. Rev. Lett. , vol.97 , pp. 087209
    • Batrouni, G.G.1    Hébert, F.2    Scalettar, R.T.3
  • 52
    • 45749108159 scopus 로고    scopus 로고
    • For a more modern view, see Ref. below.
    • For a more modern view, see Ref. below.
  • 53
    • 13044268246 scopus 로고
    • See, e.g., PLRBAQ 0556-2805 10.1103/PhysRevB.16.1217
    • See, e.g., J. V. Jose, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev. B PLRBAQ 0556-2805 10.1103/PhysRevB.16.1217 16, 1217 (1977), and references therein.
    • (1977) Phys. Rev. B , vol.16 , pp. 1217
    • Jose, J.V.1    Kadanoff, L.P.2    Kirkpatrick, S.3    Nelson, D.R.4
  • 54
    • 0007036853 scopus 로고
    • This idea has been used to explain the vanishing of the Hall conductivity at magnetic field-tuned superconducting transitions: See PHYADX 0378-4371 10.1016/0378-4371(91)90200-V
    • This idea has been used to explain the vanishing of the Hall conductivity at magnetic field-tuned superconducting transitions: See M. P. A. Fisher, Physica A PHYADX 0378-4371 10.1016/0378-4371(91)90200-V 177, 553 (1991);
    • (1991) Physica a , vol.177 , pp. 553
    • Fisher, M.P.A.1
  • 55
    • 4043183915 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.68.694
    • A. T. Dorsey and M. P. A. Fisher, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.68.694 68, 694 (1992).
    • (1992) Phys. Rev. Lett. , vol.68 , pp. 694
    • Dorsey, A.T.1    Fisher, M.P.A.2
  • 56
    • 4244143206 scopus 로고
    • In d=1, arbitrarily weak hopping disorder in the spin- 1 2 XXZ chain with vanishing axial magnetic field (Ref.) leads to an insulating phase consisting of bound (ferromagnetic) singlet pairs-a random singlet glass: see PRBMDO 0163-1829 10.1103/PhysRevB.50.3799
    • In d=1, arbitrarily weak hopping disorder in the spin- 1 2 XXZ chain with vanishing axial magnetic field (Ref.) leads to an insulating phase consisting of bound (ferromagnetic) singlet pairs-a random singlet glass: see D. S. Fisher, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.50.3799 50, 3799 (1994). In the 1D boson problem, this means that the superfluid transition takes place at finite J0,c (u∼ k) >0 even at half-integer filling, (Ref.), and Fig. 1 must be adjusted accordingly, with a line of random singlet glass [identified by both an infinite superfluid susceptibility, (Ref.), and an infinite compressibility, κ→∞ (Ref.)] at μ∼ = μ∼ k on the interval 0≤ J0 < J0,c (μ∼ k).
    • (1994) Phys. Rev. B , vol.50 , pp. 3799
    • Fisher, D.S.1
  • 57
    • 0346365713 scopus 로고
    • In the limit of small J0/U0, only site occupancies of k and k+1 contribute between Mott lobes, and Eq. 1.1 or 1.2 may be mapped onto a spin- 1 2 XXZ model H1/2 =- ∑i,j Jij [σ ix σ jx + σ iy σ jy] -h i σiz, in which h μ- (k+ 1 2) U0 vanishes at half-filling [see, Ref., as well as 10.1088/0034-4885/30/2/306 0034-4885 RPPHAG
    • In the limit of small J0 / U0, only site occupancies of k and k+1 contribute between Mott lobes, and Eq. 1.1 or 1.2 may be mapped onto a spin- 1 2 XXZ model H1/2 =- ∑i,j Jij [σ ix σ jx + σ iy σ jy] -h i σiz, in which μ- (k+ 1 2) U0 vanishes at half-filling [see, Ref., as well as M. E. Fisher, Rep. Prog. Phys. RPPHAG 0034-4885 10.1088/0034-4885/30/ 2/306 30, 615 (1967)]. If h=0, the energetics, for d>1 (Ref.), favors spins aligned in the plane. So long as the model is not singular, in the sense that there is finite probability p0 that a given Jij, vanishes, the model will have a long-range superfluid order, ψ0 [σ ix +i σiy ] av ≠0. Moreover, in this J0 / U0 →0 limit, J0 is the only energy scale, and the quantum state must be independent of J0, showing that superfluidity survives for arbitrarily small J0. If p0 lies above the bond percolation threshold, the lattice will break up into finite, noncommunicating droplets, and bulk superfluidity is suppressed entirely. For nonzero h, roughly speaking, those sites where h/ J̄ i lies above some threshold of order unity, where J̄ i = 1 2 j Jij, will align with h along z (or -z, for h<0). For sufficiently large h, depending on the precise distribution of Jij, the z -aligned spin clusters will percolate, and superfluidity will be destroyed. The resulting state is the spin- 1 2 analog of the Bose glass phase, and the remaining isolated planar ordered clusters (those with anomalously small h/ J̄ i) are the superfluid droplets of Sec. 3. The two Mott phases correspond to h sufficiently large that all spins are z aligned (or antialigned).
    • (1967) Rep. Prog. Phys. , vol.30 , pp. 615
    • Fisher, M.E.1
  • 58
    • 0001745236 scopus 로고
    • For a detailed discussion of the onset transition, see, e.g., PRBMDO 0163-1829 10.1103/PhysRevB.38.8739
    • For a detailed discussion of the onset transition, see, e.g., P. B. Weichman, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.38.8739 38, 8739 (1988).
    • (1988) Phys. Rev. B , vol.38 , pp. 8739
    • Weichman, P.B.1
  • 59
    • 4243634560 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.61.1847
    • D. S. Fisher and M. P. A. Fisher, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.61.1847 61, 1847 (1988).
    • (1988) Phys. Rev. Lett. , vol.61 , pp. 1847
    • Fisher, D.S.1    Fisher, M.P.A.2
  • 60
    • 34547308803 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.98.245701
    • P. B. Weichman and R. Mukhopadhyay, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.98.245701 98, 245701 (2007).
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 245701
    • Weichman, P.B.1    Mukhopadhyay, R.2
  • 61
    • 0014667053 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.23.17
    • R. B. Griffiths, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett. 23.17 23, 17 (1969).
    • (1969) Phys. Rev. Lett. , vol.23 , pp. 17
    • Griffiths, R.B.1
  • 62
    • 0002990025 scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.32.447
    • M. E. Fisher and V. Privman, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.32.447 32, 447 (1985).
    • (1985) Phys. Rev. B , vol.32 , pp. 447
    • Fisher, M.E.1    Privman, V.2
  • 63
    • 0000052917 scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.37.4936
    • D. S. Fisher and P. C. Hohenberg, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.37.4936 37, 4936 (1988).
    • (1988) Phys. Rev. B , vol.37 , pp. 4936
    • Fisher, D.S.1    Hohenberg, P.C.2
  • 64
    • 35949034972 scopus 로고
    • There are dynamical scaling breakdown issues at the finite T lambda transition [described by the classical model F equations: RMPHAT 0034-6861 10.1103/RevModPhys.49.435
    • There are dynamical scaling breakdown issues at the finite T lambda transition [described by the classical model F equations: P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.49.435 49, 435 (1977)]
    • (1977) Rev. Mod. Phys. , vol.49 , pp. 435
    • Hohenberg, P.C.1    Halperin, B.I.2
  • 65
    • 0001445753 scopus 로고
    • as well, where the finite κ argument now yields z=d/2. However, violations are possible (and believed to occur in d=3) where there exist two different dynamical exponents z1 and z2 satisfying z1 + z2 =d. Only the mean (z1 + z2) /2=d/2 enters the corresponding hydrodynamic correlation function [PRBMDO 0163-1829 10.1103/PhysRevB.44.2697
    • as well, where the finite κ argument now yields z=d/2. However, violations are possible (and believed to occur in d=3) where there exist two different dynamical exponents z1 and z2 satisfying z1 + z2 =d. Only the mean (z1 + z2) /2=d/2 enters the corresponding hydrodynamic correlation function [V. Dohm, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.44.2697 44, 2697 (1991)].
    • (1991) Phys. Rev. B , vol.44 , pp. 2697
    • Dohm, V.1
  • 66
    • 0000983693 scopus 로고
    • No nonuniversal amplitude A is required in this formulation due to quantum hyperuniversality: See PRBMDO 0163-1829 10.1103/PhysRevB.43.13583
    • No nonuniversal amplitude A is required in this formulation due to quantum hyperuniversality: See K. Kim and P. B. Weichman, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.43.13583 43, 13583 (1991).
    • (1991) Phys. Rev. B , vol.43 , pp. 13583
    • Kim, K.1    Weichman, P.B.2
  • 67
    • 24244445660 scopus 로고
    • The definition of the superfluid density 4.8 in terms of finite-size scaling of twisted boundary conditions was first proposed by PLRAAN 1050-2947 10.1103/PhysRevA.8.1111
    • The definition of the superfluid density 4.8 in terms of finite-size scaling of twisted boundary conditions was first proposed by M. E. Fisher, M. N. Barber, and D. Jasnow, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.8.1111 8, 1111 (1973). Amazingly, the last section of this paper, containing a discussion of how finite-size scaling might lead to violations of the Josephson relation, proposes a mechanism very similar to ours: anomalously strong boundary condition dependence of tθ, the distance from the critical point, on the twist wave vector, k0. If tθ -t∼ k02, they find υ=1-α. Here we find an even more anomalous linear dependence of δθ -δ on ω0, leading to υτ =-α. We are unaware of any classical model where the original proposed violation occurs, but a candidate would presumably be a transition between two different phases with finite superfluid density.
    • (1973) Phys. Rev. a , vol.8 , pp. 1111
    • Fisher, M.E.1    Barber, M.N.2    Jasnow, D.3
  • 68
    • 4243944881 scopus 로고
    • A famous theorem [PRLTAO 0031-9007 10.1103/PhysRevLett.57.2999
    • A famous theorem [J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.57.2999 57, 2999 (1986);
    • (1986) Phys. Rev. Lett. , vol.57 , pp. 2999
    • Chayes, J.T.1    Chayes, L.2    Fisher, D.S.3    Spencer, T.4
  • 69
    • 33646646291 scopus 로고
    • CMPHAY 0010-3616 10.1007/BF01225510
    • J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer, Commun. Math. Phys. CMPHAY 0010-3616 10.1007/BF01225510 120, 501 (1989)] requires that νfs >2/d, where νfs is a correlation exponent defined through finite-size scaling, and it is commonly assumed that under most conditions that ν= νfs.
    • (1989) Commun. Math. Phys. , vol.120 , pp. 501
    • Chayes, J.T.1    Chayes, L.2    Fisher, D.S.3    Spencer, T.4
  • 70
    • 0001400859 scopus 로고    scopus 로고
    • However, it has been argued more recently [PRLTAO 0031-9007 10.1103/PhysRevLett.79.5130
    • However, it has been argued more recently [F. Pazmandi, R. T. Scalettar, and G. T. Zimanyi, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.79.5130 79, 5130 (1997)] that νfs generally places no constraints on the value of ν. Nevertheless, analytic results in d=1 (Ref.) and quantum Monte Carlo data in d=2 (Ref.) are consistent with this inequality.
    • (1997) Phys. Rev. Lett. , vol.79 , pp. 5130
    • Pazmandi, F.1    Scalettar, R.T.2    Zimanyi, G.T.3
  • 71
    • 84956109971 scopus 로고
    • EULEEJ 0295-5075 10.1209/0295-5075/3/12/007
    • T. Giamarchi and H. J. Schulz, Europhys. Lett. EULEEJ 0295-5075 10.1209/0295-5075/3/12/007 3, 1287 (1987);
    • (1987) Europhys. Lett. , vol.3 , pp. 1287
    • Giamarchi, T.1    Schulz, H.J.2
  • 72
    • 8644272071 scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.37.325
    • T. Giamarchi and H. J. Schulz, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.37.325 37, 325 (1988).
    • (1988) Phys. Rev. B , vol.37 , pp. 325
    • Giamarchi, T.1    Schulz, H.J.2
  • 74
    • 0000359165 scopus 로고
    • See, e.g., PLRBAQ 0556-2805 10.1103/PhysRevB.12.1038
    • See, e.g., A. Aharony, Phys. Rev. B PLRBAQ 0556-2805 10.1103/PhysRevB.12. 1038 12, 1038 (1975);
    • (1975) Phys. Rev. B , vol.12 , pp. 1038
    • Aharony, A.1
  • 75
    • 85104369179 scopus 로고
    • see also in edited by C. Domb and M. S. Green (Academic, London
    • see also in Phase Transitions and Critical Phenomena, edited by, C. Domb, and, M. S. Green, (Academic, London, 1976), Vol. 6, Chap..
    • (1976) Phase Transitions and Critical Phenomena , vol.6
  • 76
    • 0001898814 scopus 로고
    • See, e.g., PRPLCM 0370-1573 10.1016/0370-1573(74)90023-4
    • See, e.g., K. G. Wilson and J. Kogut, Phys. Rep., Phys. Lett. PRPLCM 0370-1573 10.1016/0370-1573(74)90023-4 12C, 75 (1974).
    • (1974) Phys. Rep., Phys. Lett. , vol.12 , pp. 75
    • Wilson, K.G.1    Kogut, J.2
  • 77
    • 0000162933 scopus 로고
    • See, e.g., PTPKAV 0033-068X 10.1143/PTP.56.1454
    • See, e.g., M. Suzuki, Prog. Theor. Phys. PTPKAV 0033-068X 10.1143/PTP.56.1454 56, 1454 (1976).
    • (1976) Prog. Theor. Phys. , vol.56 , pp. 1454
    • Suzuki, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.