-
1
-
-
0001311772
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.34.3136
-
M. Ma, B.I. Halperin, and P.A. Lee, Phys. Rev. B PRBMDO 0163-1829 34, 3136 (1986). 10.1103/PhysRevB.34.3136
-
(1986)
Phys. Rev. B
, vol.34
, pp. 3136
-
-
Ma, M.1
Halperin, B.I.2
Lee, P.A.3
-
2
-
-
4243634560
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.61.1847
-
D.S. Fisher and M.P.A. Fisher, Phys. Rev. Lett. 61, 1847 (1988). PRLTAO 0031-9007 10.1103/PhysRevLett.61.1847
-
(1988)
Phys. Rev. Lett.
, vol.61
, pp. 1847
-
-
Fisher, D.S.1
Fisher, M.P.A.2
-
3
-
-
33645215486
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.40.546
-
M.P.A. Fisher, P.B. Weichman, G. Grinstein, and D.S. Fisher, Phys. Rev. B PRBMDO 0163-1829 40, 546 (1989). 10.1103/PhysRevB.40.546
-
(1989)
Phys. Rev. B
, vol.40
, pp. 546
-
-
Fisher, M.P.A.1
Weichman, P.B.2
Grinstein, G.3
Fisher, D.S.4
-
4
-
-
0001445706
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.40.813
-
P.B. Weichman and K. Kim, Phys. Rev. B PRBMDO 0163-1829 40, 813 (1989). 10.1103/PhysRevB.40.813
-
(1989)
Phys. Rev. B
, vol.40
, pp. 813
-
-
Weichman, P.B.1
Kim, K.2
-
5
-
-
0001680728
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.58.971
-
I.F. Herbut, Phys. Rev. B PRBMDO 0163-1829 58, 971 (1998). 10.1103/PhysRevB.58.971
-
(1998)
Phys. Rev. B
, vol.58
, pp. 971
-
-
Herbut, I.F.1
-
6
-
-
0001219421
-
-
See, e.g., PRLTAO 0031-9007 10.1103/PhysRevLett.66.3144
-
See, e.g., R.T. Scalettar, G.G. Batrouni, and G.T. Zimanyi, Phys. Rev. Lett. 66, 3144 (1991); PRLTAO 0031-9007 10.1103/PhysRevLett.66.3144
-
(1991)
Phys. Rev. Lett.
, vol.66
, pp. 3144
-
-
Scalettar, R.T.1
Batrouni, G.G.2
Zimanyi, G.T.3
-
7
-
-
0000508037
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.74.1500
-
S. Zhang, N. Kawashima, J. Carlson, and J.E. Gubernatis, Phys. Rev. Lett. 74, 1500 (1995); PRLTAO 0031-9007 10.1103/PhysRevLett.74.1500
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 1500
-
-
Zhang, S.1
Kawashima, N.2
Carlson, J.3
Gubernatis, J.E.4
-
8
-
-
0038732480
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.67.015701
-
F. Alet and E.S. Sørensen, Phys. Rev. E 67, 015701(R) (2003); PLEEE8 1063-651X 10.1103/PhysRevE.67.015701
-
(2003)
Phys. Rev. e
, vol.67
-
-
Alet, F.1
Sørensen, E.S.2
-
9
-
-
1242352112
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.92.015703
-
N. Prokof'ev and B. Svistunov, Phys. Rev. Lett. 92, 015703 (2004). PRLTAO 0031-9007 10.1103/PhysRevLett.92.015703
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 015703
-
-
Prokof'Ev, N.1
Svistunov, B.2
-
10
-
-
3643074068
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.71.2307
-
M. Makivic, N. Trivedi, and S. Ullah, Phys. Rev. Lett. 71, 2307 (1993); PRLTAO 0031-9007 10.1103/PhysRevLett.71.2307
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 2307
-
-
Makivic, M.1
Trivedi, N.2
Ullah, S.3
-
11
-
-
7244225891
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.74.1038
-
P.B. Weichman, Phys. Rev. Lett. 74, 1038 (1995); PRLTAO 0031-9007 10.1103/PhysRevLett.74.1038
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 1038
-
-
Weichman, P.B.1
-
12
-
-
7244227424
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.74.1039
-
N. Trivedi and M. Makivic, Phys. Rev. Lett. 74, 1039 (1995). PRLTAO 0031-9007 10.1103/PhysRevLett.74.1039
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 1039
-
-
Trivedi, N.1
Makivic, M.2
-
13
-
-
0003451591
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.76.2977
-
R. Mukhopadhyay and P.B. Weichman, Phys. Rev. Lett. 76, 2977 (1996). PRLTAO 0031-9007 10.1103/PhysRevLett.76.2977
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 2977
-
-
Mukhopadhyay, R.1
Weichman, P.B.2
-
14
-
-
33748679725
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.97.115703
-
A. Priyadarshee, S. Chandrasekharan, J.-W. Lee, and H.U. Baranger, Phys. Rev. Lett. 97, 115703 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.97.115703
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 115703
-
-
Priyadarshee, A.1
Chandrasekharan, S.2
Lee, J.-W.3
Baranger, H.U.4
-
15
-
-
0000148254
-
-
PYLAAG 0375-9601 10.1016/0375-9601(80)90604-0
-
S.N. Dorogovtsev, Phys. Lett. A 76, 169 (1980); PYLAAG 0375-9601 10.1016/0375-9601(80)90604-0
-
(1980)
Phys. Lett. A
, vol.76
, pp. 169
-
-
Dorogovtsev, S.N.1
-
16
-
-
0000605284
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.26.154
-
D. Boyanovsky and J.L. Cardy, Phys. Rev. B PRBMDO 0163-1829 26, 154 (1982). 10.1103/PhysRevB.26.154
-
(1982)
Phys. Rev. B
, vol.26
, pp. 154
-
-
Boyanovsky, D.1
Cardy, J.L.2
-
18
-
-
24244445660
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.8.1111
-
M.E. Fisher, M.N. Barber, and D. Jasnow, Phys. Rev. A 8, 1111 (1973). Amazingly, the last section of this paper, containing a discussion of how finite-size scaling might lead to violations of the Josephson relation, proposes a mechanism very similar to ours: anomalously strong boundary condition dependence of tθ, the distance from the critical point, on the twist wave vector, k0. If tθ-t∼k02, they find υ=1-α. Here we find an even more anomalous linear dependence of δθ-δ on ω0, leading to υτ=-α. We are unaware of any classical model where the original proposed violation occurs. PLRAAN 1050-2947 10.1103/PhysRevA.8.1111
-
(1973)
Phys. Rev. A
, vol.8
, pp. 1111
-
-
Fisher, M.E.1
Barber, M.N.2
Jasnow, D.3
-
19
-
-
34547252656
-
-
This can be demonstrated more explicitly:
-
This can be demonstrated more explicitly: P.B. Weichman and R. Mukhopadhyay (unpublished).
-
-
-
Weichman, P.B.1
Mukhopadhyay, R.2
-
20
-
-
0000983693
-
-
No overall multiplicative scale factor is required due to quantum hyperuniversality: see PRBMDO 0163-1829 10.1103/PhysRevB.43.13583
-
No overall multiplicative scale factor is required due to quantum hyperuniversality: see K. Kim and P.B. Weichman, Phys. Rev. B PRBMDO 0163-1829 43, 13583 (1991). 10.1103/PhysRevB.43.13583
-
(1991)
Phys. Rev. B
, vol.43
, pp. 13583
-
-
Kim, K.1
Weichman, P.B.2
-
21
-
-
0001445753
-
-
There are dynamical scaling breakdown issues at the finite T lambda transition (described by the classical Model F equations) as well, where the finite κ argument now yields z=d/2. However, violations are possible where there exist two different dynamical exponents z1, z2 satisfying z1+z2=d. Only the mean (z1+z2)/2=d/2 enters the corresponding hydrodynamic correlation function [PRBMDO 0163-1829 10.1103/PhysRevB.44.2697
-
There are dynamical scaling breakdown issues at the finite T lambda transition (described by the classical Model F equations) as well, where the finite κ argument now yields z=d/2. However, violations are possible where there exist two different dynamical exponents z1, z2 satisfying z1+z2=d. Only the mean (z1+z2)/2=d/2 enters the corresponding hydrodynamic correlation function [V. Dohm, Phys. Rev. B PRBMDO 0163-1829 44, 2697 (1991)]. 10.1103/PhysRevB.44.2697
-
(1991)
Phys. Rev. B
, vol.44
, pp. 2697
-
-
Dohm, V.1
-
22
-
-
4243944881
-
-
In a perhaps related effect, the rigorous finite-size correlation length exponent inequality νFS 2/d for classical random systems [PRLTAO 0031-9007 10.1103/PhysRevLett.57.2999
-
In a perhaps related effect, the rigorous finite-size correlation length exponent inequality νFS 2/d for classical random systems [J.T. Chayes, L. Chayes, D.S. Fisher, and T. Spencer, Phys. Rev. Lett. PRLTAO 0031-9007 57, 2999 (1986)] 10.1103/PhysRevLett.57.2999
-
(1986)
Phys. Rev. Lett.
, vol.57
, pp. 2999
-
-
Chayes, J.T.1
Chayes, L.2
Fisher, D.S.3
Spencer, T.4
-
23
-
-
0001400859
-
-
does not preclude a second "intrinsic" exponent ν with ν<2/d PRLTAO 0031-9007 10.1103/PhysRevLett.79.5130
-
does not preclude a second "intrinsic" exponent ν with ν<2/d [F. Pázmándi, R. Scalettar, and G.T. Zimányi, Phys. Rev. Lett. PRLTAO 0031-9007 79, 5130 (1997)] 10.1103/PhysRevLett.79.5130
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 5130
-
-
Pázmándi, F.1
Scalettar, R.2
Zimányi, G.T.3
|