메뉴 건너뛰기




Volumn 41, Issue 10, 2008, Pages 3173-3178

Application of the cross entropy method to the GLVQ algorithm

Author keywords

Cross entropy method; Generalized learning vector quantization; Initialization sensitiveness

Indexed keywords

AEROSPACE APPLICATIONS; ALGORITHMS; BOOLEAN FUNCTIONS; CERIUM; EDUCATION; EVOLUTIONARY ALGORITHMS; FUNCTION EVALUATION; INTEGER PROGRAMMING; LEARNING SYSTEMS; OPTIMIZATION; PAPER; SCHEDULING ALGORITHMS; SET THEORY; SOFTWARE PROTOTYPING; STRUCTURAL OPTIMIZATION; VECTOR QUANTIZATION;

EID: 45649084222     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2008.03.016     Document Type: Article
Times cited : (17)

References (28)
  • 1
    • 45649084874 scopus 로고    scopus 로고
    • T. Kohonen, Learning vector quantization for pattern recognition, Technical Report TKK-F-A601, 1986.
    • T. Kohonen, Learning vector quantization for pattern recognition, Technical Report TKK-F-A601, 1986.
  • 2
    • 0025540140 scopus 로고    scopus 로고
    • T. Kohonen, Improved versions of learning vector quantization, INJCN, 1990.
    • T. Kohonen, Improved versions of learning vector quantization, INJCN, 1990.
  • 3
    • 0028757281 scopus 로고    scopus 로고
    • M. Pregenzer, D. Flotzinger, G. Pfurtscheller, Distinction sensitive learning vector quantization-a noise-insentitive classification method, in: IEEE International Joint Conference on Neural Networks, vol. 10, 1994, pp. 2890-2894.
    • M. Pregenzer, D. Flotzinger, G. Pfurtscheller, Distinction sensitive learning vector quantization-a noise-insentitive classification method, in: IEEE International Joint Conference on Neural Networks, vol. 10, 1994, pp. 2890-2894.
  • 4
    • 0033365847 scopus 로고    scopus 로고
    • Self-organizing maps and learning vector quantization for feature sequences
    • Somervuo P., and Kohonen T. Self-organizing maps and learning vector quantization for feature sequences. Neural Process. Lett. 10 (1999) 151-159
    • (1999) Neural Process. Lett. , vol.10 , pp. 151-159
    • Somervuo, P.1    Kohonen, T.2
  • 5
    • 45649083719 scopus 로고    scopus 로고
    • T. Bojer, B. Hammer, D. Schunk, K.V. Toschanowitz, Relevance determination in learning vector quantization, in: The European Symposium on Artificial Neural Networks, 2001, pp. 271-276.
    • T. Bojer, B. Hammer, D. Schunk, K.V. Toschanowitz, Relevance determination in learning vector quantization, in: The European Symposium on Artificial Neural Networks, 2001, pp. 271-276.
  • 6
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer B., and Villman T. Generalized relevance learning vector quantization. Neural Networks 15 8-9 (2002) 1059-1068
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villman, T.2
  • 8
    • 13644265129 scopus 로고    scopus 로고
    • Initialization insensitive LVQ algorithm based on cost-function adaptation
    • Qin A., and Suganthan P. Initialization insensitive LVQ algorithm based on cost-function adaptation. Pattern Recognition 38 5 (2005) 773-776
    • (2005) Pattern Recognition , vol.38 , Issue.5 , pp. 773-776
    • Qin, A.1    Suganthan, P.2
  • 9
    • 12844250052 scopus 로고    scopus 로고
    • Supervised neural gas with general similarity measure
    • Hammer B., Strickert M., and Villmann T. Supervised neural gas with general similarity measure. Neural Process. Lett. 21 1 (2004) 21-44
    • (2004) Neural Process. Lett. , vol.21 , Issue.1 , pp. 21-44
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 10
    • 45649084097 scopus 로고    scopus 로고
    • T. Bojer, B. Hammer, C. Koers, Monitoring technical systems with prototype based clustering, in: The European Symposium on Artificial Neural Networks, 2002, pp. 271-276.
    • T. Bojer, B. Hammer, C. Koers, Monitoring technical systems with prototype based clustering, in: The European Symposium on Artificial Neural Networks, 2002, pp. 271-276.
  • 11
    • 45649084332 scopus 로고    scopus 로고
    • K. Crammer, R. Gilad-Bachrach, A. Navot, N. Tishby, Margin analysis of the LVQ algorithm, in: NIPS'2002, 2002.
    • K. Crammer, R. Gilad-Bachrach, A. Navot, N. Tishby, Margin analysis of the LVQ algorithm, in: NIPS'2002, 2002.
  • 12
    • 0031139210 scopus 로고    scopus 로고
    • Optimization of computer simulation models with rare events
    • Rubinstein R. Optimization of computer simulation models with rare events. Eur. J. Oper. Res. 99 (1997) 89-112
    • (1997) Eur. J. Oper. Res. , vol.99 , pp. 89-112
    • Rubinstein, R.1
  • 13
    • 33845335812 scopus 로고    scopus 로고
    • Application of the cross-entropy method to clustering and vector quantization
    • Kroese D.P., Rubinstein R.Y., T., and T. Application of the cross-entropy method to clustering and vector quantization. Eur. J. Oper. Res. 37 (2007) 137-157
    • (2007) Eur. J. Oper. Res. , vol.37 , pp. 137-157
    • Kroese, D.P.1    Rubinstein, R.Y.2    Taimre, T.3
  • 16
    • 0026982122 scopus 로고
    • Discriminative learning for minimum error classification
    • Juang B.H., and Katagiri S. Discriminative learning for minimum error classification. IEEE Trans. Signal Process. 40 2 (1992) 3043-3054
    • (1992) IEEE Trans. Signal Process. , vol.40 , Issue.2 , pp. 3043-3054
    • Juang, B.H.1    Katagiri, S.2
  • 18
    • 33750721638 scopus 로고    scopus 로고
    • The cross-entropy method for continuous multi-extremal optimization
    • Kroese D., Porotsky S., and Rubinstein R. The cross-entropy method for continuous multi-extremal optimization. Methodol. Comput. Appl. Probab. 8 (2006) 383-407
    • (2006) Methodol. Comput. Appl. Probab. , vol.8 , pp. 383-407
    • Kroese, D.1    Porotsky, S.2    Rubinstein, R.3
  • 19
    • 84901401227 scopus 로고    scopus 로고
    • O. Wittner, B.E. Helvik, Cross entropy guided ant-like agents finding dependable primary/backup path patterns in networks, in: Congress on Evolutionary Computation (CEC2002), 2002.
    • O. Wittner, B.E. Helvik, Cross entropy guided ant-like agents finding dependable primary/backup path patterns in networks, in: Congress on Evolutionary Computation (CEC2002), 2002.
  • 22
    • 17444366936 scopus 로고    scopus 로고
    • Solving the vehicle routing problem with stochastic demands using the cross entropy method
    • Chepuri K., and de Mello T.H. Solving the vehicle routing problem with stochastic demands using the cross entropy method. Ann. Oper. Res. 134 (2005) 153-181
    • (2005) Ann. Oper. Res. , vol.134 , pp. 153-181
    • Chepuri, K.1    de Mello, T.H.2
  • 24
    • 17744363105 scopus 로고    scopus 로고
    • Global likelihood optimization via the cross-entropy method, with an application to mixture models
    • Botev Z., and Kroese D. Global likelihood optimization via the cross-entropy method, with an application to mixture models. Proceedings of the 2004 Winter Simulation Conference (2004)
    • (2004) Proceedings of the 2004 Winter Simulation Conference
    • Botev, Z.1    Kroese, D.2
  • 25
    • 45649084428 scopus 로고    scopus 로고
    • D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz, Uci Repository of Machine Learning Databases. URL: 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉, 1998.
    • D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz, Uci Repository of Machine Learning Databases. URL: 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉, 1998.
  • 26
    • 0034418371 scopus 로고    scopus 로고
    • Distribution-balanced stratified cross-validation for accuracy estimation
    • Zeng X., and Martinez T.R. Distribution-balanced stratified cross-validation for accuracy estimation. J. Exp. Theor. Artif. Intell. 12 (2000) 1-12
    • (2000) J. Exp. Theor. Artif. Intell. , vol.12 , pp. 1-12
    • Zeng, X.1    Martinez, T.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.