메뉴 건너뛰기




Volumn 11, Issue 1-2, 2004, Pages 181-199

Numerical procedures for recovering a time dependent coefficient in a parabolic differential equation

Author keywords

Convergence; Inverse problem; Maximum principle; Numerical method

Indexed keywords


EID: 4544288635     PISSN: 14928760     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (22)

References (14)
  • 1
    • 0347936090 scopus 로고    scopus 로고
    • Numerical procedures for the determination of an unknown coefficient in parabolic differential equations
    • MR 2003h:35275
    • Hossein Azari, Numerical procedures for the determination of an unknown coefficient in parabolic differential equations, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 9 (2002), no. 4, 555-573. MR 2003h:35275
    • (2002) Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms , vol.9 , Issue.4 , pp. 555-573
    • Azari, H.1
  • 2
    • 84972492610 scopus 로고
    • Determination of an unknown coefficient in a parabolic differential equation
    • J. R. Cannon, Determination of an unknown coefficient in a parabolic differential equation, Duke Math. J., 30 (1963), 313-323.
    • (1963) Duke Math. J. , vol.30 , pp. 313-323
    • Cannon, J.R.1
  • 3
    • 51249161311 scopus 로고
    • Determination of source parameter in parabolic equation
    • J. R. Cannon, Yanping Lin, and Shingmin Wang, Determination of source parameter in parabolic equation, Meccanica, 27 (1992), 85-94.
    • (1992) Meccanica , vol.27 , pp. 85-94
    • Cannon, J.R.1    Lin, Y.2    Wang, S.3
  • 4
    • 0000293752 scopus 로고
    • Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equations
    • MR 96a:65125
    • J. R. Cannon, Yanping Lin, and Shuzhan Xu, Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equations, Inverse Problems, 10 (1994), no. 2, 227-243. MR 96a:65125
    • (1994) Inverse Problems , vol.10 , Issue.2 , pp. 227-243
    • Cannon, J.R.1    Lin, Y.2    Xu, S.3
  • 5
    • 4544222666 scopus 로고
    • Recovering a time dependent coefficient in a parabolic differential equation
    • MR 92g:35227
    • J. R. Cannon and W. Rundell, Recovering a time dependent coefficient in a parabolic differential equation, J. Math. Anal. Appl., 160 (1991), no. 2, 572-582. MR 92g:35227
    • (1991) J. Math. Anal. Appl. , vol.160 , Issue.2 , pp. 572-582
    • Cannon, J.R.1    Rundell, W.2
  • 6
    • 84985357023 scopus 로고
    • Numerical solutions of some parabolic inverse problems
    • MR 92g:65205
    • J. R. Cannon and Hong-Ming Yin, Numerical solutions of some parabolic inverse problems, Numer. Methods Partial Differential Equations, 6 (1990), no. 2, 177-191. MR 92g:65205
    • (1990) Numer. Methods Partial Differential Equations , vol.6 , Issue.2 , pp. 177-191
    • Cannon, J.R.1    Yin, H.-M.2
  • 7
    • 0041886069 scopus 로고
    • The determination of a coefficient in a parabolic differential equation. I. Existence and uniqueness
    • Jr. B. F. Jones, The determination of a coefficient in a parabolic differential equation, I. Existence and uniqueness, J. Math. Mech., 11 (1962), 907-918.
    • (1962) J. Math. Mech. , vol.11 , pp. 907-918
    • Jones Jr., B.F.1
  • 8
    • 84972492610 scopus 로고
    • The determination of a coefficient in a parabolic equation
    • -, The determination of a coefficient in a parabolic equation, Duke Math. J., 30 (1963), 313-324.
    • (1963) Duke Math. J. , vol.30 , pp. 313-324
  • 9
    • 84980073430 scopus 로고
    • Various methods for finding unknown coefficients in parabolic differential equations
    • -, Various methods for finding unknown coefficients in parabolic differential equations, Comm. Pure Appl. Math., XVI (1963), 33-44.
    • (1963) Comm. Pure Appl. Math. , vol.16 , pp. 33-44
  • 10
    • 21844490240 scopus 로고
    • Analytical and numerical solutions for a class of nonlocal nonlinear parabolic differential equations
    • MR 95i:35167
    • Yanping Lin, Analytical and numerical solutions for a class of nonlocal nonlinear parabolic differential equations, SIAM J. Math. Anal., 25 (1994), no. 6, 1577-1594. MR 95i:35167
    • (1994) SIAM J. Math. Anal. , vol.25 , Issue.6 , pp. 1577-1594
    • Lin, Y.1
  • 11
    • 0027664788 scopus 로고
    • Finite-difference approximations for a class of nonlocal parabolic boundary value problems
    • MR 94j:65128
    • Yanping Lin and R. J. Tait, Finite-difference approximations for a class of nonlocal parabolic boundary value problems, J. Comput. Appl. Math., 47 (1993), no. 3, 335-350. MR 94j:65128
    • (1993) J. Comput. Appl. Math. , vol.47 , Issue.3 , pp. 335-350
    • Lin, Y.1    Tait, R.J.2
  • 12
    • 0000360006 scopus 로고    scopus 로고
    • Finite difference approximations for a class of non-local parabolic equations
    • MR 97i:65155
    • Yanping Lin, Shuzhan Xu, and Hong-Ming Yin, Finite difference approximations for a class of non-local parabolic equations, Internat. J. Math. Math. Sci., 20 (1997), no. 1, 147-163. MR 97i:65155
    • (1997) Internat. J. Math. Math. Sci. , vol.20 , Issue.1 , pp. 147-163
    • Lin, Y.1    Xu, S.2    Yin, H.-M.3
  • 14
    • 4544295476 scopus 로고    scopus 로고
    • Solvability of a class of parabolic inverse problems
    • MR 97h:35236
    • Hong-Ming Yin, Solvability of a class of parabolic inverse problems, Adv. Differential Equations, 1 (1996), no. 6, 1005-1023. MR 97h:35236
    • (1996) Adv. Differential Equations , vol.1 , Issue.6 , pp. 1005-1023
    • Yin, H.-M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.