메뉴 건너뛰기




Volumn 9, Issue 4, 2002, Pages 555-573

Numerical procedures for the determination of an unknown coefficient in parabolic differential equations

Author keywords

Convergence; Inverse problem; Maximum principle; Numerical method

Indexed keywords


EID: 0347936090     PISSN: 14928760     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (7)

References (18)
  • 1
    • 0002179054 scopus 로고
    • Determination of a parameter p(t) in some quasilinear parabolic differential equations
    • MR 89h:35333
    • J. R. Cannon and Yanping Lin, Determination of a parameter p(t) in some quasilinear parabolic differential equations, Inverse Problems 4 (1988), no. 1, 35-45. MR 89h:35333
    • (1988) Inverse Problems , vol.4 , Issue.1 , pp. 35-45
    • Cannon, J.R.1    Lin, Y.2
  • 2
    • 0002179056 scopus 로고
    • Determination of parameter p(t) in Hōlder classes for some semilinear parabolic equations
    • MR 90a:35222
    • _, Determination of parameter p(t) in Hōlder classes for some semilinear parabolic equations, Inverse Problems 4 (1988), no. 3, 595-606. MR 90a:35222
    • (1988) Inverse Problems , vol.4 , Issue.3 , pp. 595-606
  • 3
    • 51249161311 scopus 로고
    • Determination of source parameter in parabolic equation
    • J. R. Cannon, Yanping Lin, and Shingmin Wang, Determination of source parameter in parabolic equation, Meccanica 27 (1992), 85-94.
    • (1992) Meccanica , vol.27 , pp. 85-94
    • Cannon, J.R.1    Lin, Y.2    Wang, S.3
  • 4
    • 0023364649 scopus 로고
    • A Galerkin procedure for the diffusion equation subject to the specification of mass
    • MR 88e:65132
    • John R. Cannon, Salvador Pérez Esteva, and John van der Hoek, A Galerkin procedure for the diffusion equation subject to the specification of mass, SIAM J. Numer. Anal. 24 (1987), no. 3, 499-515. MR 88e:65132
    • (1987) SIAM J. Numer. Anal. , vol.24 , Issue.3 , pp. 499-515
    • Cannon, J.R.1    Esteva, S.P.2    Van Der Hoek, J.3
  • 5
    • 0001218929 scopus 로고
    • An optimum implicit recurrence formulae for heat conduction equation
    • S. H. Crandall, An optimum implicit recurrence formulae for heat conduction equation, Q. Appl. Math. 13 (1955), 318-320.
    • (1955) Q. Appl. Math. , vol.13 , pp. 318-320
    • Crandall, S.H.1
  • 6
    • 0347320970 scopus 로고
    • Solution for diffusion with integral type boundary conditions
    • K. L. Deckert and C. G. Maple, Solution for diffusion with integral type boundary conditions, Proc. IOwa Acad. Sci. 70 (1963), 354-361.
    • (1963) Proc. IOwa Acad. Sci. , vol.70 , pp. 354-361
    • Deckert, K.L.1    Maple, C.G.2
  • 7
    • 0035450576 scopus 로고    scopus 로고
    • An inverse problem of finding a source parameter in a semilinear parabolic equation
    • M. Dehghan, An inverse problem of finding a source parameter in a semilinear parabolic equation, Applied Mathematical Modelling 25 (2001), no. 9, 743-754.
    • (2001) Applied Mathematical Modelling , vol.25 , Issue.9 , pp. 743-754
    • Dehghan, M.1
  • 9
    • 0000610591 scopus 로고
    • Solution of a boundary-value problem in heat conduction with a non-classical boundary condition
    • N. I. Ionkin, Solution of a boundary-value problem in heat conduction with a non-classical boundary condition, J. Differential Equations 13 (1977), 204-211.
    • (1977) J. Differential Equations , vol.13 , pp. 204-211
    • Ionkin, N.I.1
  • 12
    • 21844490240 scopus 로고
    • Analytical and numerical solutions for a class of nonlocal nonlinear parabolic differential equations
    • MR 95i:35167
    • Yanping Lin, Analytical and numerical solutions for a class of nonlocal nonlinear parabolic differential equations, SIAM J. Math. Anal. 25 (1994), no. 6, 1577-1594. MR 95i:35167
    • (1994) SIAM J. Math. Anal. , vol.25 , Issue.6 , pp. 1577-1594
    • Lin, Y.1
  • 13
    • 0346690445 scopus 로고    scopus 로고
    • Stability of nonlocal diffusion equations
    • Differential equations and dynamical systems (Waterloo, ON, 1997). MR 2000c:35104
    • Yanping Lin and James H. Liu, Stability of nonlocal diffusion equations, Dynam. Contin. Discrete Impuls. Systems 5 (1999), no. 1-4, 53-66, Differential equations and dynamical systems (Waterloo, ON, 1997). MR 2000c:35104
    • (1999) Dynam. Contin. Discrete Impuls. Systems , vol.5 , Issue.1-4 , pp. 53-66
    • Lin, Y.1    Liu, J.H.2
  • 14
    • 0000360006 scopus 로고    scopus 로고
    • Finite difference approximations for a class of non-local parabolic equations
    • MR 97i:65135
    • Yanping Lin, Shuzhan Xu, and Hong-Ming Yin, Finite difference approximations for a class of non-local parabolic equations, Internat. J. Math. Math. Sci. 20 (1997), no. 1, 147-163. MR 97i:65135
    • (1997) Internat. J. Math. Math. Sci. , vol.20 , Issue.1 , pp. 147-163
    • Lin, Y.1    Xu, S.2    Yin, H.-M.3
  • 16
    • 0031078187 scopus 로고    scopus 로고
    • An inverse problem for a nonlinear diffusion equation
    • A. Shidfar and H. Azari, An inverse problem for a nonlinear diffusion equation, Nonlinear Analysis theo., meth., and appl. 28 (1997), no. 4, 589-593.
    • (1997) Nonlinear Analysis Theo., Meth., and Appl. , vol.28 , Issue.4 , pp. 589-593
    • Shidfar, A.1    Azari, H.2
  • 17
    • 0003017084 scopus 로고
    • A finite-difference solution to an inverse problem for determining a control function in a parabolic partial differential equation
    • MR 90d:35299
    • Shingmin Wang and Yanping Lin, A finite-difference solution to an inverse problem for determining a control function in a parabolic partial differential equation, Inverse Problems 5 (1989), no. 4, 631-640. MR 90d:35299
    • (1989) Inverse Problems , vol.5 , Issue.4 , pp. 631-640
    • Wang, S.1    Lin, Y.2
  • 18
    • 49549156305 scopus 로고
    • The modified equation approach to the stability and accuracy analysis of finite difference methods
    • B. J. Hyett R. F. Warming, The modified equation approach to the stability and accuracy analysis of finite difference methods, J. Comput. Phys. 14 (1974), no. 2, 159-179.
    • (1974) J. Comput. Phys. , vol.14 , Issue.2 , pp. 159-179
    • Hyett, B.J.1    Warming, R.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.