메뉴 건너뛰기




Volumn 21, Issue 1, 2005, Pages 67-82

Homogenization method for strength and inelastic behavior of nanocrystalline materials

Author keywords

Composite materials; Hall Petch; Homogenization; Nanocrystalline materials

Indexed keywords

AMORPHOUS MATERIALS; COMPOSITE MATERIALS; CREEP; DISLOCATIONS (CRYSTALS); INCLUSIONS; MATHEMATICAL MODELS; NANOSTRUCTURED MATERIALS; PLASTICITY;

EID: 4544278142     PISSN: 07496419     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijplas.2004.02.002     Document Type: Article
Times cited : (99)

References (36)
  • 1
    • 0014731854 scopus 로고
    • The deformation of plastically non homogeneous materials
    • Ashby M.F. The deformation of plastically non homogeneous materials. Phil. Mag. 21:1970;399-424.
    • (1970) Phil. Mag. , vol.21 , pp. 399-424
    • Ashby, M.F.1
  • 2
    • 0035704294 scopus 로고    scopus 로고
    • On the effect of grain size on yield stress: Extension into nanocrystalline domain
    • Benson D.J., Fu H.H., Meyers M.A. On the effect of grain size on yield stress: extension into nanocrystalline domain. Mater. Sci. Eng. A. 319-321:2001;854-861.
    • (2001) Mater. Sci. Eng. A , vol.319-321 , pp. 854-861
    • Benson, D.J.1    Fu, H.H.2    Meyers, M.A.3
  • 3
    • 0029306113 scopus 로고
    • A simple mixture based model for the grain size dependence of strength in nanophase metals
    • Carsley J.E., Ning J., Milligan W.W., Hackney S.A., Aifantis E.C. A simple mixture based model for the grain size dependence of strength in nanophase metals. Nanostruct. Mater. 5:1995;441-448.
    • (1995) Nanostruct. Mater. , vol.5 , pp. 441-448
    • Carsley, J.E.1    Ning, J.2    Milligan, W.W.3    Hackney, S.A.4    Aifantis, E.C.5
  • 4
    • 0034465459 scopus 로고    scopus 로고
    • Micromechanics modelling of composite with ductile matrix and shape memory alloy reinforcement
    • Cherkaoui M., Sun Q.P., Song G.P. Micromechanics modelling of composite with ductile matrix and shape memory alloy reinforcement. Int. J. Solid Struct. 37:2000;1577.
    • (2000) Int. J. Solid Struct. , vol.37 , pp. 1577
    • Cherkaoui, M.1    Sun, Q.P.2    Song, G.P.3
  • 5
    • 36849133101 scopus 로고
    • A model for boundary diffusion controlled creep in polycrystalline materials
    • Coble R.L. A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34:1963;1979-1982.
    • (1963) J. Appl. Phys. , vol.34 , pp. 1979-1982
    • Coble, R.L.1
  • 6
    • 0037454509 scopus 로고    scopus 로고
    • Grain size dependence of the plastic deformation kinetics in Cu
    • Conrad H. Grain size dependence of the plastic deformation kinetics in Cu. Mater. Sci. Eng. A. 341:2003;216-228.
    • (2003) Mater. Sci. Eng. A , vol.341 , pp. 216-228
    • Conrad, H.1
  • 7
    • 0036887381 scopus 로고    scopus 로고
    • Length scale effects in the simulation of deformation properties of nanocrystalline metals
    • Derlet P.M., Swygenhoven H.V. Length scale effects in the simulation of deformation properties of nanocrystalline metals. Scripta Mater. 47:2002;719-724.
    • (2002) Scripta Mater. , vol.47 , pp. 719-724
    • Derlet, P.M.1    Swygenhoven, H.V.2
  • 8
    • 0000929676 scopus 로고
    • The determination of the elastic field of an ellipsoidal inclusion and related problems
    • Eshelby J.D. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. A. 241:1957;376-396.
    • (1957) Proc. R. Soc. Lond. A , vol.241 , pp. 376-396
    • Eshelby, J.D.1
  • 9
    • 0001867695 scopus 로고    scopus 로고
    • Dislocation theory based constitutive modelling: Foundations and applications
    • Estrin Y. Dislocation theory based constitutive modelling: foundations and applications. J. Mater. Proc. Technol. 80:1998;33-39.
    • (1998) J. Mater. Proc. Technol. , vol.80 , pp. 33-39
    • Estrin, Y.1
  • 10
    • 0036833237 scopus 로고    scopus 로고
    • Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation
    • Evers L.P., Parks D.M., Brekelmans W.A.M., Geers M.G.D. Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation. J. Mech. Phys. Solid. 50:2002;2403-2424.
    • (2002) J. Mech. Phys. Solid , vol.50 , pp. 2403-2424
    • Evers, L.P.1    Parks, D.M.2    Brekelmans, W.A.M.3    Geers, M.G.D.4
  • 11
    • 0035426340 scopus 로고    scopus 로고
    • Analytical and computational description of grain size on yield stress of metals
    • Fu H.H., Benson D.J., Meyers M.A. Analytical and computational description of grain size on yield stress of metals. Acta Mater. 49:2001;2567-2582.
    • (2001) Acta Mater. , vol.49 , pp. 2567-2582
    • Fu, H.H.1    Benson, D.J.2    Meyers, M.A.3
  • 12
  • 13
    • 0001462205 scopus 로고
    • The deformation and aging of mild steel
    • Hall E.O. The deformation and aging of mild steel. Proc. R. Soc. (Lond.) B. 64:1951;474.
    • (1951) Proc. R. Soc. (Lond.) B , vol.64 , pp. 474
    • Hall, E.O.1
  • 14
    • 0009826182 scopus 로고
    • Diffusional viscosity of a polycrystalline solid
    • Herring C. Diffusional viscosity of a polycrystalline solid. J. Appl. Phys. 21:1950;437.
    • (1950) J. Appl. Phys. , vol.21 , pp. 437
    • Herring, C.1
  • 15
    • 0037412133 scopus 로고    scopus 로고
    • Modeling of thermally activated dislocation glide and plastic flow through local obstacles
    • Hiratani M., Zbib H.M., Khaleel M.A. Modeling of thermally activated dislocation glide and plastic flow through local obstacles. Int. J. Plasticity. 19:2003;1271-1296.
    • (2003) Int. J. Plasticity , vol.19 , pp. 1271-1296
    • Hiratani, M.1    Zbib, H.M.2    Khaleel, M.A.3
  • 16
    • 0033696411 scopus 로고    scopus 로고
    • Mechanical response and modeling of fully compacted nanocrystalline iron and copper
    • Khan A.S., Zhang H., Takacs L. Mechanical response and modeling of fully compacted nanocrystalline iron and copper. Int. J. Plasticity. 16:2000;1459-1476.
    • (2000) Int. J. Plasticity , vol.16 , pp. 1459-1476
    • Khan, A.S.1    Zhang, H.2    Takacs, L.3
  • 17
    • 0033880337 scopus 로고    scopus 로고
    • Plastic deformation behaviour of fine-grained materials
    • Kim H.S., Bush M.B., Estrin Y. Plastic deformation behaviour of fine-grained materials. Acta Mater. 48:1999;493.
    • (1999) Acta Mater. , vol.48 , pp. 493
    • Kim, H.S.1    Bush, M.B.2    Estrin, Y.3
  • 18
    • 0032679637 scopus 로고    scopus 로고
    • The effects of grain size and porosity on the elastic modulus of nanocrystalline materials
    • Kim H.S., Bush M.B. The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostruct. Mater. 11:1999;361-367.
    • (1999) Nanostruct. Mater. , vol.11 , pp. 361-367
    • Kim, H.S.1    Bush, M.B.2
  • 19
    • 0032624534 scopus 로고    scopus 로고
    • A model of ductile brittle transition of partially crystallized amorphous Al-Ni-Y alloys
    • Kim H.S., Hong S.I. A model of ductile brittle transition of partially crystallized amorphous Al-Ni-Y alloys. Acta Mater. 47:1999;2059-2066.
    • (1999) Acta Mater. , vol.47 , pp. 2059-2066
    • Kim, H.S.1    Hong, S.I.2
  • 20
    • 0035888304 scopus 로고    scopus 로고
    • Constitutive modelling of strength and plasticity of nanocrystalline metallic materials
    • Kim H.S., Bush M.B., Estrin Y. Constitutive modelling of strength and plasticity of nanocrystalline metallic materials. Mater. Sci. Eng. A. 316:2001;195-199.
    • (2001) Mater. Sci. Eng. A , vol.316 , pp. 195-199
    • Kim, H.S.1    Bush, M.B.2    Estrin, Y.3
  • 21
    • 0032178595 scopus 로고    scopus 로고
    • On the anomalous hardness of nanocrystalline materials
    • Konstantinidis D.A., Aifantis E.C. On the anomalous hardness of nanocrystalline materials. Nanostruct. Mater. 10:1998;1111-1118.
    • (1998) Nanostruct. Mater. , vol.10 , pp. 1111-1118
    • Konstantinidis, D.A.1    Aifantis, E.C.2
  • 23
    • 0000527773 scopus 로고
    • Petch relation and grain boundary source
    • Li J.C.M. Petch relation and grain boundary source. Trans. TMS-AIME. 227:1963;239-247.
    • (1963) Trans. TMS-AIME , vol.227 , pp. 239-247
    • Li, J.C.M.1
  • 24
    • 4544290969 scopus 로고    scopus 로고
    • Generation of dislocations during plastic deformation
    • Messerschmidt U., Bartsch M. Generation of dislocations during plastic deformation. Mater. Chem. Phys. 9824:2003;1-6.
    • (2003) Mater. Chem. Phys. , vol.9824 , pp. 1-6
    • Messerschmidt, U.1    Bartsch, M.2
  • 25
    • 0030104410 scopus 로고    scopus 로고
    • On the pile up model of the grain size-yield stress for nanocrystals
    • Nazarov A.A. On the pile up model of the grain size-yield stress for nanocrystals. Scripta Mater. 34:1996;697-701.
    • (1996) Scripta Mater. , vol.34 , pp. 697-701
    • Nazarov, A.A.1
  • 27
    • 0002228943 scopus 로고
    • The cleavage strength of polycrystals
    • Petch N.J. The cleavage strength of polycrystals. J. Iron Steel Inst. 174:1953;25.
    • (1953) J. Iron Steel Inst. , vol.174 , pp. 25
    • Petch, N.J.1
  • 30
    • 0031259103 scopus 로고    scopus 로고
    • Elastic and tensile behaviour of nanocrystalline copper and palladium
    • Sanders P.G., Eastman J.A., Weertman J.R. Elastic and tensile behaviour of nanocrystalline copper and palladium. Acta Mater. 45:1997;4019-4025.
    • (1997) Acta Mater. , vol.45 , pp. 4019-4025
    • Sanders, P.G.1    Eastman, J.A.2    Weertman, J.R.3
  • 31
    • 0043192617 scopus 로고    scopus 로고
    • A maximum in the strength of nanocrystalline copper
    • Schiotz J., Jacobsen K.W. A maximum in the strength of nanocrystalline copper. Science. 301:2003;1357.
    • (2003) Science , vol.301 , pp. 1357
    • Schiotz, J.1    Jacobsen, K.W.2
  • 32
    • 0037166028 scopus 로고    scopus 로고
    • Hall-Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel
    • Schuh C.A., Nieh T.G., Yamasaki T. Hall-Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. Scripta Mater. 46:2002;735-740.
    • (2002) Scripta Mater. , vol.46 , pp. 735-740
    • Schuh, C.A.1    Nieh, T.G.2    Yamasaki, T.3
  • 33
    • 0030083309 scopus 로고    scopus 로고
    • Deformation, recovery, and recrystallization behavior of nanocrystalline copper produced by solution phase synthesis
    • Suryanarayanan R., Frey C.A., Sastry S.M.L., Waller B.E., Bates S.E., Buhro W.E. Deformation, recovery, and recrystallization behavior of nanocrystalline copper produced by solution phase synthesis. J. Mater. Res. 11:1996;439.
    • (1996) J. Mater. Res. , vol.11 , pp. 439
    • Suryanarayanan, R.1    Frey, C.A.2    Sastry, S.M.L.3    Waller, B.E.4    Bates, S.E.5    Buhro, W.E.6
  • 34
    • 0029253449 scopus 로고
    • Effect of grainsize on mechanical properties of nanocrystalline materials
    • Wang N., Wang Z., Aust K.T., Erb U. Effect of grainsize on mechanical properties of nanocrystalline materials. Acta Metall. Mater. 43:1995;519.
    • (1995) Acta Metall. Mater. , vol.43 , pp. 519
    • Wang, N.1    Wang, Z.2    Aust, K.T.3    Erb, U.4
  • 35
    • 0035899586 scopus 로고    scopus 로고
    • Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular dynamics simulation
    • Yamakov V., Wolf D., Salazar M., Phillpot S.R., Geiter H. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular dynamics simulation. Acta Mater. 49:2001;2713-2722.
    • (2001) Acta Mater. , vol.49 , pp. 2713-2722
    • Yamakov, V.1    Wolf, D.2    Salazar, M.3    Phillpot, S.R.4    Geiter, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.