메뉴 건너뛰기




Volumn , Issue , 2006, Pages

Dealing with class skew in context recognition

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SYSTEMS; CURVES (ROAD); ELECTRIC NETWORK ANALYSIS; LEARNING SYSTEMS;

EID: 44949151560     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDCSW.2006.36     Document Type: Conference Paper
Times cited : (16)

References (23)
  • 1
    • 34748923860 scopus 로고    scopus 로고
    • A scenario-based approach for direct interruptablity prediction on wearable devices
    • A. Bernstein and P. Vorburger. A scenario-based approach for direct interruptablity prediction on wearable devices. J. of Pervasive Computing and Communications, 2(2), 2006.
    • (2006) J. of Pervasive Computing and Communications , vol.2 , Issue.2
    • Bernstein, A.1    Vorburger, P.2
  • 2
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the roc curve in the evaluation of machine learning algorithms
    • July
    • A. P. Bradley. The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7): 1145-1159, July 1997.
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 5
    • 0345438685 scopus 로고    scopus 로고
    • ROC Graphs: Notes and practical considerations for researchers
    • HPL-2003-4, HP Laboratories, Palo Alto, CA, USA, Mar
    • T. Fawcett. ROC Graphs: notes and practical considerations for researchers. Technical Report previous: HPL-2003-4, HP Laboratories, Palo Alto, CA, USA, Mar. 2004.
    • (2004) Technical Report previous
    • Fawcett, T.1
  • 7
    • 0034732869 scopus 로고    scopus 로고
    • Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests
    • May
    • M. Greiner, D. Pfeiffer, and R. Smith. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Preventive Veterinary Medicine, 45(1):23-41, May 2000.
    • (2000) Preventive Veterinary Medicine , vol.45 , Issue.1 , pp. 23-41
    • Greiner, M.1    Pfeiffer, D.2    Smith, R.3
  • 8
    • 0003562954 scopus 로고    scopus 로고
    • Simple generalisation of the area under the ROC curve for multiple class classification problems
    • Nov
    • D. J. Hand and R. J. Till. Simple generalisation of the area under the ROC curve for multiple class classification problems. Machine Learning, 45(2): 171-186, Nov. 2001.
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 9
    • 1942452386 scopus 로고    scopus 로고
    • Improving accuracy and cost of two-class and multi-class probabilistic classifiers using ROC curves
    • Jan
    • N. Lachiche and P. Flach. Improving accuracy and cost of two-class and multi-class probabilistic classifiers using ROC curves. In Proc. 20th Int'l Conf. on Machine Learning (ICML), pages 416-423, Jan. 2003.
    • (2003) Proc. 20th Int'l Conf. on Machine Learning (ICML) , pp. 416-423
    • Lachiche, N.1    Flach, P.2
  • 13
    • 0018079655 scopus 로고
    • Basic principles of ROC analysis
    • Oct
    • C. E. Metz. Basic principles of ROC analysis. Seminars in Nuclear Medicine, 8(4):283-298, Oct. 1978.
    • (1978) Seminars in Nuclear Medicine , vol.8 , Issue.4 , pp. 283-298
    • Metz, C.E.1
  • 14
    • 0022470978 scopus 로고
    • ROC methodology in radiologic imaging
    • Sept
    • C. E. Metz. ROC methodology in radiologic imaging. Investigative Radiology, 21(9):720-733, Sept. 1986.
    • (1986) Investigative Radiology , vol.21 , Issue.9 , pp. 720-733
    • Metz, C.E.1
  • 15
    • 85101511266 scopus 로고    scopus 로고
    • Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions
    • Aug
    • F. Provost and T. Fawcett. Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions. In Proc. of the 3rd Int'l Conf. on Knowledge Discovery and Data Mining (KDD), pages 43-48, Aug. 1997.
    • (1997) Proc. of the 3rd Int'l Conf. on Knowledge Discovery and Data Mining (KDD) , pp. 43-48
    • Provost, F.1    Fawcett, T.2
  • 16
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Mar
    • F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning, 42(3):203-232, Mar. 2001.
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 203-232
    • Provost, F.1    Fawcett, T.2
  • 17
    • 0004320335 scopus 로고    scopus 로고
    • Note on the location of optimal classifiers in n-dimensional ROC space
    • Technical Report PRG-TR-2-99, Oxford University Computing Laboratory, England
    • A. Srinivasan. Note on the location of optimal classifiers in n-dimensional ROC space. Technical Report PRG-TR-2-99, Oxford University Computing Laboratory, England, 1999.
    • (1999)
    • Srinivasan, A.1
  • 19
    • 0018390029 scopus 로고
    • ROC analysis applied to the evaluation of medical imaging techniques
    • Mar./Apr
    • J. Swets. ROC analysis applied to the evaluation of medical imaging techniques. Investigative Radiology, 14(2): 109-121, Mar./Apr. 1979.
    • (1979) Investigative Radiology , vol.14 , Issue.2 , pp. 109-121
    • Swets, J.1
  • 20
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • June
    • J. S wets. Measuring the accuracy of diagnostic systems. Science, 240(4857): 1285-1293, June 1988.
    • (1988) Science , vol.240 , Issue.4857 , pp. 1285-1293
    • wets, J.S.1
  • 23
    • 0031150149 scopus 로고    scopus 로고
    • Generating ROC curves for artificial neural networks
    • June
    • K. Woods and K. Bowyer. Generating ROC curves for artificial neural networks. IEEE Transactions on Medical Imaging, 16(3):329-337, June 1997.
    • (1997) IEEE Transactions on Medical Imaging , vol.16 , Issue.3 , pp. 329-337
    • Woods, K.1    Bowyer, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.