-
1
-
-
0005846896
-
Optimization by neural networks: their questions and subjects-another approach
-
(in Japanese)
-
Aiyoshi E., and Yoshikawa A. Optimization by neural networks: their questions and subjects-another approach. J. SICE 34 5 (1995) 358-366 (in Japanese)
-
(1995)
J. SICE
, vol.34
, Issue.5
, pp. 358-366
-
-
Aiyoshi, E.1
Yoshikawa, A.2
-
2
-
-
0008860705
-
The differential geometry of population genetics and evolutionary games
-
Lessard S. (Ed), Kluwer Academic Publishers, Dordrecht
-
Akin E. The differential geometry of population genetics and evolutionary games. In: Lessard S. (Ed). Mathematical and Statistical Developments of Evolutionary Theory (1990), Kluwer Academic Publishers, Dordrecht 1-93
-
(1990)
Mathematical and Statistical Developments of Evolutionary Theory
, pp. 1-93
-
-
Akin, E.1
-
3
-
-
0000396062
-
Natural gradient works efficiently in learning
-
Amari S. Natural gradient works efficiently in learning. Neural Comput. 10 2 (1998) 251-276
-
(1998)
Neural Comput.
, vol.10
, Issue.2
, pp. 251-276
-
-
Amari, S.1
-
4
-
-
85139378524
-
-
Attouch, H., Teboulle, M., 2004. Regularized Lotka-Volterra dynamical system as continuous proximal-like method in optimization. J. Optim. Theory Appl. 121 (3), 541-570. doi:10.1023/B:JOTA.0000037603.51578.45.
-
Attouch, H., Teboulle, M., 2004. Regularized Lotka-Volterra dynamical system as continuous proximal-like method in optimization. J. Optim. Theory Appl. 121 (3), 541-570. doi:10.1023/B:JOTA.0000037603.51578.45.
-
-
-
-
5
-
-
84966258893
-
The nonlinear geometry of linear programming. I affine and projective scaling trajectories
-
Bayer D.A., and Lagarias J.C. The nonlinear geometry of linear programming. I affine and projective scaling trajectories. Trans. Am. Math. Soc. 314 2 (1989) 499-526
-
(1989)
Trans. Am. Math. Soc.
, vol.314
, Issue.2
, pp. 499-526
-
-
Bayer, D.A.1
Lagarias, J.C.2
-
6
-
-
85139380599
-
-
Bozma, H. I., 1996. Computation of Nash equilibria: admissibility of parallel gradient descent. J. Optim. Theory Appl. 90 (1), 45-61. doi:10.1007/BF02192245.
-
Bozma, H. I., 1996. Computation of Nash equilibria: admissibility of parallel gradient descent. J. Optim. Theory Appl. 90 (1), 45-61. doi:10.1007/BF02192245.
-
-
-
-
7
-
-
0000463442
-
-
Brown, A. A., Bartholonew-Biggs, M. C., 1989. Some effective methods for unconstrained optimization based on the solution of systems of ordinary differential equations. J. Optim. Theory Appl. 62 (2), 211-224. doi:10.1007/BF00941054.
-
Brown, A. A., Bartholonew-Biggs, M. C., 1989. Some effective methods for unconstrained optimization based on the solution of systems of ordinary differential equations. J. Optim. Theory Appl. 62 (2), 211-224. doi:10.1007/BF00941054.
-
-
-
-
9
-
-
0000754239
-
Iterative solution of problems of linear and quadratic programming
-
Dikin I.I. Iterative solution of problems of linear and quadratic programming. Sov. Math. Dokl. 8 3 (1967) 674-675
-
(1967)
Sov. Math. Dokl.
, vol.8
, Issue.3
, pp. 674-675
-
-
Dikin, I.I.1
-
10
-
-
0001935197
-
On the speed of an iterative process
-
Dikin I.I. On the speed of an iterative process. Upravlyaemye Sistemi 12 (1974) 54-60
-
(1974)
Upravlyaemye Sistemi
, vol.12
, pp. 54-60
-
-
Dikin, I.I.1
-
11
-
-
0015133749
-
-
Eigen, M., 1971. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58 (10), 465-523. doi:10.1007/BF00623322.
-
Eigen, M., 1971. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58 (10), 465-523. doi:10.1007/BF00623322.
-
-
-
-
12
-
-
0021018846
-
-
Eshel, I., Akin, E., 1983. Coevolutionary instability of mixed Nash solutions. J. Math. Biol. 18 (2), 123-133. doi:10.1007/BF00280661.
-
Eshel, I., Akin, E., 1983. Coevolutionary instability of mixed Nash solutions. J. Math. Biol. 18 (2), 123-133. doi:10.1007/BF00280661.
-
-
-
-
13
-
-
0001708712
-
-
Faybusovich, L., 1991. Dynamical systems which solve optimization problems with linear constraints. IMA J. Math. Control Inf. 8 (2), 135-149. doi:10.1093/imamci/8.2.135.
-
Faybusovich, L., 1991. Dynamical systems which solve optimization problems with linear constraints. IMA J. Math. Control Inf. 8 (2), 135-149. doi:10.1093/imamci/8.2.135.
-
-
-
-
15
-
-
0014538507
-
-
Goldfarb, D., 1969. Extension of Davidon's variable metric method to maximization under linear inequality and equality constraints. SIAM J. Appl. Math. 17 (4), 739-764. doi:10.1137/0117067.
-
Goldfarb, D., 1969. Extension of Davidon's variable metric method to maximization under linear inequality and equality constraints. SIAM J. Appl. Math. 17 (4), 739-764. doi:10.1137/0117067.
-
-
-
-
16
-
-
0001075269
-
-
Gopalsamy, K., Xue-zhong, He., 1994. Stability in asymmetric Hopfield nets with transmission delays. Physica D 76 (4), 344-358. doi:10.1016/0167-2789(94)90043-4.
-
Gopalsamy, K., Xue-zhong, He., 1994. Stability in asymmetric Hopfield nets with transmission delays. Physica D 76 (4), 344-358. doi:10.1016/0167-2789(94)90043-4.
-
-
-
-
18
-
-
0000063856
-
-
Hofbauer, J., 1981. On the occurence of limit cycles in the Volterra-Lotka equation. Nonlinear Analysis TMA 5 (9), 1003-1007. doi:10.1016/0362-546X(81)90059-6.
-
Hofbauer, J., 1981. On the occurence of limit cycles in the Volterra-Lotka equation. Nonlinear Analysis TMA 5 (9), 1003-1007. doi:10.1016/0362-546X(81)90059-6.
-
-
-
-
20
-
-
0021835689
-
-
Hopfield, J. J., Tank, D. W., 1985. "Neural" computation of decisions in optimization problems. Biol. Cybern. 52 (3), 141-152. doi:10.1007/BF00339943.
-
Hopfield, J. J., Tank, D. W., 1985. "Neural" computation of decisions in optimization problems. Biol. Cybern. 52 (3), 141-152. doi:10.1007/BF00339943.
-
-
-
-
21
-
-
0032319841
-
-
Horie, R., Aiyoshi, E., 1998. Neural networks realization of searching models for Nash equilibrium points and their application to associative memories. In: System, Man, Cybernetics, 1998. 1998 IEEE International Conference, vol. 2, pp. 1886-1891. doi:10.1109/ICSMC.1998.728171.
-
Horie, R., Aiyoshi, E., 1998. Neural networks realization of searching models for Nash equilibrium points and their application to associative memories. In: System, Man, Cybernetics, 1998. 1998 IEEE International Conference, vol. 2, pp. 1886-1891. doi:10.1109/ICSMC.1998.728171.
-
-
-
-
22
-
-
0033345435
-
-
Horie, R., Aiyoshi, E., 1999. Variable metric gradient projection method and replicator equation. In: Systems, Man, Cybernetics, 1999. 1999 IEEE International Conference, vol. 3, pp. 515-520. doi:10.1109/ICSMC.1999.823262.
-
Horie, R., Aiyoshi, E., 1999. Variable metric gradient projection method and replicator equation. In: Systems, Man, Cybernetics, 1999. 1999 IEEE International Conference, vol. 3, pp. 515-520. doi:10.1109/ICSMC.1999.823262.
-
-
-
-
23
-
-
44749091817
-
-
Incerti, S., Parisi, V., Zirilli, F., 1979. A new method for solving nonlinear simultaneous equations. SIAM J. Numer. Anal. 16 (5), 779-789. doi:10.1137/0716057.
-
Incerti, S., Parisi, V., Zirilli, F., 1979. A new method for solving nonlinear simultaneous equations. SIAM J. Numer. Anal. 16 (5), 779-789. doi:10.1137/0716057.
-
-
-
-
24
-
-
51249181779
-
-
Karmarkar, N., 1984. A new polynomial-time algorithm for linear programming. Combinatorica 4 (4), 373-395. doi:10.1007/BF02579150.
-
Karmarkar, N., 1984. A new polynomial-time algorithm for linear programming. Combinatorica 4 (4), 373-395. doi:10.1007/BF02579150.
-
-
-
-
25
-
-
0002500563
-
Riemannian geometry underlying interior-point methods for linear programming
-
Karmarkar N. Riemannian geometry underlying interior-point methods for linear programming. Contemp. Math. 114 (1990) 51-75
-
(1990)
Contemp. Math.
, vol.114
, pp. 51-75
-
-
Karmarkar, N.1
-
27
-
-
33846837061
-
-
Lotka, A., J., 1920. Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc. 42 (8), 1595-1599. doi:10.1021/ja01453a010.
-
Lotka, A., J., 1920. Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc. 42 (8), 1595-1599. doi:10.1021/ja01453a010.
-
-
-
-
28
-
-
0042165490
-
Stochastic differential equations for the Wright-Fisher model
-
(in Japanese)
-
Maruyama K., and Itoh Y. Stochastic differential equations for the Wright-Fisher model. Proc. Inst. Statist. Math. 39 1 (1991) 47-52 (in Japanese)
-
(1991)
Proc. Inst. Statist. Math.
, vol.39
, Issue.1
, pp. 47-52
-
-
Maruyama, K.1
Itoh, Y.2
-
31
-
-
85139377402
-
-
Pacelli, G., Recchioni, M. C., 2000. Monotone variable-metric algorithm for linearly constrained nonlinear programming. J. Optim. Theory Appl. 104 (2), 255-279. doi:10.1023/A:1004645328197.
-
Pacelli, G., Recchioni, M. C., 2000. Monotone variable-metric algorithm for linearly constrained nonlinear programming. J. Optim. Theory Appl. 104 (2), 255-279. doi:10.1023/A:1004645328197.
-
-
-
-
32
-
-
26844488873
-
-
Pross, A., 2005. On the chemical nature and origin of teleonomy. Orig. Life Evol. Bios. 35 (4), 383-394. doi:10.1007/s11084-005-2045-9.
-
Pross, A., 2005. On the chemical nature and origin of teleonomy. Orig. Life Evol. Bios. 35 (4), 383-394. doi:10.1007/s11084-005-2045-9.
-
-
-
-
33
-
-
44749089340
-
-
Rosen, J. B., 1960. The gradient projection method for nonlinear programming, part I, linear constraints. SIAM J. Appl. Math. 8 (1), 181-217. doi:10.1137/0108011.
-
Rosen, J. B., 1960. The gradient projection method for nonlinear programming, part I, linear constraints. SIAM J. Appl. Math. 8 (1), 181-217. doi:10.1137/0108011.
-
-
-
-
35
-
-
0019424630
-
-
Schuster, P., Sigmund, K., Hofbauer, J., Gottlieb, R., Merz, P., 1981. Selfregulation of behaviour in animal societies III, Games between two populations with selfinteraction. Biol. Cybern. 40 (1), 17-25. doi:10.1007/BF00326677.
-
Schuster, P., Sigmund, K., Hofbauer, J., Gottlieb, R., Merz, P., 1981. Selfregulation of behaviour in animal societies III, Games between two populations with selfinteraction. Biol. Cybern. 40 (1), 17-25. doi:10.1007/BF00326677.
-
-
-
-
36
-
-
0001772071
-
A new mathematical framework for the study of linkage and selection
-
Shahshahani S. A new mathematical framework for the study of linkage and selection. Mem. Amer. Math. Soc. 17 211 (1979) 1-34
-
(1979)
Mem. Amer. Math. Soc.
, vol.17
, Issue.211
, pp. 1-34
-
-
Shahshahani, S.1
-
37
-
-
0008869082
-
The maximum principle for replicator equations
-
Ebeling W., and Peschel M. (Eds), Akademie Verlag, Berlin
-
Sigmund K. The maximum principle for replicator equations. In: Ebeling W., and Peschel M. (Eds). Lotka-Volterra Approach to Dynamical Systems (1984), Akademie Verlag, Berlin 63-71
-
(1984)
Lotka-Volterra Approach to Dynamical Systems
, pp. 63-71
-
-
Sigmund, K.1
-
38
-
-
0018983159
-
-
Tanabe, K., 1980. A geometric method in nonlinear programming. J. Optim. Theory Appl. 30 (2), 181-210. doi:10.1007/BF00934495.
-
Tanabe, K., 1980. A geometric method in nonlinear programming. J. Optim. Theory Appl. 30 (2), 181-210. doi:10.1007/BF00934495.
-
-
-
-
39
-
-
0022721216
-
Simple "neural" optimization networks: an A/D converter, signal decision circuit and a linear programming circuit
-
Tank D.W., and Hopfield J.J. Simple "neural" optimization networks: an A/D converter, signal decision circuit and a linear programming circuit. IEEE Trans. CAS CAS-33 5 (1986) 533-541
-
(1986)
IEEE Trans. CAS
, vol.CAS-33
, Issue.5
, pp. 533-541
-
-
Tank, D.W.1
Hopfield, J.J.2
-
40
-
-
0017819644
-
-
Taylor P. D., Jonker, L. B., 1978. Evolutionarily stable strategies and game dynamics. Math. Biosci. 40 (1-2), 145-156. doi:10.1016/0025-5564(78)90077-9.
-
Taylor P. D., Jonker, L. B., 1978. Evolutionarily stable strategies and game dynamics. Math. Biosci. 40 (1-2), 145-156. doi:10.1016/0025-5564(78)90077-9.
-
-
-
-
41
-
-
6644225279
-
-
Urahama, K., 1994. Equivalence between some dynamical systems for optimization. Neural Proc. Lett. 1 (2), 14-17. doi:10.1007/BF02310937.
-
Urahama, K., 1994. Equivalence between some dynamical systems for optimization. Neural Proc. Lett. 1 (2), 14-17. doi:10.1007/BF02310937.
-
-
-
-
42
-
-
0001302140
-
Gradient projection network: analog solver for linearly constrained nonlinear programming
-
Urahama K. Gradient projection network: analog solver for linearly constrained nonlinear programming. Neural Comput. 8 5 (1996) 1061-1073
-
(1996)
Neural Comput.
, vol.8
, Issue.5
, pp. 1061-1073
-
-
Urahama, K.1
-
43
-
-
0008839170
-
Dynamical systems, gradient flows and optimization
-
Vidyasagar M. Dynamical systems, gradient flows and optimization. System, Control Inf. (J. ISCIE) 39 1 (1995) 22-28
-
(1995)
System, Control Inf. (J. ISCIE)
, vol.39
, Issue.1
, pp. 22-28
-
-
Vidyasagar, M.1
-
44
-
-
0026980939
-
-
Vincent, T. L., Goh, B. S., Teo, K. L., 1992. Trajectory-following algorithms for min-max optimization problems. J. Optim. Theory Appl. 75 (3), 501-519. doi:10.1007/BF00940489.
-
Vincent, T. L., Goh, B. S., Teo, K. L., 1992. Trajectory-following algorithms for min-max optimization problems. J. Optim. Theory Appl. 75 (3), 501-519. doi:10.1007/BF00940489.
-
-
-
-
46
-
-
0038537695
-
-
Wheeler D. W., Schieve, W. C., 1997. Stability and chaos in an inertial two-neuron system. Physica D 105 (4), 267-284. doi:10.1016/S0167-2789(97)00008-0.
-
Wheeler D. W., Schieve, W. C., 1997. Stability and chaos in an inertial two-neuron system. Physica D 105 (4), 267-284. doi:10.1016/S0167-2789(97)00008-0.
-
-
-
|