메뉴 건너뛰기




Volumn 8, Issue 5, 1996, Pages 1061-1073

Gradient Projection Network: Analog Solver for Linearly Constrained Nonlinear Programming

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0001302140     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/neco.1996.8.5.1061     Document Type: Article
Times cited : (15)

References (12)
  • 2
    • 84966258893 scopus 로고
    • The nonlinear geometry of linear programming I, II
    • Bayer, D. A., and Lagarias, J. C. 1989. The nonlinear geometry of linear programming I, II. Trans. Am. Math. Soc. 314, 499-580.
    • (1989) Trans. Am. Math. Soc. , vol.314 , pp. 499-580
    • Bayer, D.A.1    Lagarias, J.C.2
  • 3
    • 0021835689 scopus 로고
    • Neural computations of decisions in optimization problems
    • Hopfield, J., and Tank, D. 1985. Neural computations of decisions in optimization problems. Biol. Cybern. 52, 141-152.
    • (1985) Biol. Cybern. , vol.52 , pp. 141-152
    • Hopfield, J.1    Tank, D.2
  • 4
    • 51249181779 scopus 로고
    • A new polynomial-time algorithm for linear programming
    • Karmarkar, N. 1984. A new polynomial-time algorithm for linear programming. Combinatorica 4, 373-395.
    • (1984) Combinatorica , vol.4 , pp. 373-395
    • Karmarkar, N.1
  • 5
    • 0002500563 scopus 로고
    • Riemannian geometry underlying interior-point methods for linear programming
    • Karmarkar, N. 1990. Riemannian geometry underlying interior-point methods for linear programming. Contemp. Math. 114, 51-75.
    • (1990) Contemp. Math. , vol.114 , pp. 51-75
    • Karmarkar, N.1
  • 6
    • 0002259425 scopus 로고
    • A new method for mapping optimization problems onto neural networks
    • Peterson, C., and Söderberg, B. 1989. A new method for mapping optimization problems onto neural networks. Int. J. Neural Syst. 1, 3-22.
    • (1989) Int. J. Neural Syst. , vol.1 , pp. 3-22
    • Peterson, C.1    Söderberg, B.2
  • 7
    • 0006055406 scopus 로고
    • Constrained differential optimization
    • D. Z. Anderson, ed., American Institute of Physics, New York
    • Platt, J. C., and Barr, A. H. 1987. Constrained differential optimization. In Neural Information Processing Systems, D. Z. Anderson, ed., pp. 612-621. American Institute of Physics, New York.
    • (1987) Neural Information Processing Systems , pp. 612-621
    • Platt, J.C.1    Barr, A.H.2
  • 8
    • 2342523754 scopus 로고
    • Deterministic annealing in neural networks for combinatorial optimization
    • Urahama, K. 1992. Deterministic annealing in neural networks for combinatorial optimization. Proc. Int. Symp. Neural Inf. Process. 94-97.
    • (1992) Proc. Int. Symp. Neural Inf. Process. , pp. 94-97
    • Urahama, K.1
  • 9
    • 0028333565 scopus 로고
    • Analog method for solving combinatorial optimization problems
    • Urahama, K. 1994a. Analog method for solving combinatorial optimization problems. IEICE Trans. Fundamentals E77-A, 302-308.
    • (1994) IEICE Trans. Fundamentals , vol.E77-A , pp. 302-308
    • Urahama, K.1
  • 10
    • 0028422799 scopus 로고
    • Analog circuit for solving assignment problems
    • Urahama, K. 1994b. Analog circuit for solving assignment problems. IEEE Trans. Circuits Syst. 41(1), 426-429.
    • (1994) IEEE Trans. Circuits Syst. , vol.41 , Issue.1 , pp. 426-429
    • Urahama, K.1
  • 11
    • 0027564164 scopus 로고
    • A gradient system solution to Potts mean field equations and its electronic implementation
    • Urahama, K., and Ueno, S. 1993. A gradient system solution to Potts mean field equations and its electronic implementation. Int. J. Neural Syst. 4, 27-34.
    • (1993) Int. J. Neural Syst. , vol.4 , pp. 27-34
    • Urahama, K.1    Ueno, S.2
  • 12
    • 0000629349 scopus 로고
    • Statistical physics algorithms that converge
    • Yuille, A. L., and Kosowsky, J. J. 1994. Statistical physics algorithms that converge. Neural Comp. 6(3), 341-356.
    • (1994) Neural Comp. , vol.6 , Issue.3 , pp. 341-356
    • Yuille, A.L.1    Kosowsky, J.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.