메뉴 건너뛰기




Volumn , Issue , 2006, Pages 776-780

Automated assessment of erythrocyte disorders using artificial neural network

Author keywords

Artificial neural network; Back propagation learning; Blood analysis; Image analysis; Momentum

Indexed keywords

HEMOGLOBIN; IMAGE ANALYSIS; LEARNING ALGORITHMS; NEURAL NETWORKS;

EID: 44449147845     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISSPIT.2006.270903     Document Type: Conference Paper
Times cited : (9)

References (22)
  • 4
    • 44449159633 scopus 로고    scopus 로고
    • CELL-DYN 3200 System Training Guide.
    • CELL-DYN 3200 System Training Guide.
  • 7
    • 0026722929 scopus 로고
    • The application of backpropagation neural networks to problems in pathology and laboratory medicine
    • October
    • M.L. Astion and P. Wilding, "The application of backpropagation neural networks to problems in pathology and laboratory medicine", Archives of Pathology and Laboratory Medicine, vol. 116, pp. 995-1001, October, 1992
    • (1992) Archives of Pathology and Laboratory Medicine , vol.116 , pp. 995-1001
    • Astion, M.L.1    Wilding, P.2
  • 8
    • 0028363358 scopus 로고
    • Pattern recognition and classification of images of biological macromolecules using artificial neural networks
    • June
    • R. Marabini and J.M. Carazo, "Pattern recognition and classification of images of biological macromolecules using artificial neural networks", Biophysical Journal, vol. 66, no. 6, pp. 1804-1814, June 1994.
    • (1994) Biophysical Journal , vol.66 , Issue.6 , pp. 1804-1814
    • Marabini, R.1    Carazo, J.M.2
  • 9
    • 0030906730 scopus 로고    scopus 로고
    • Generalized region growing operator with optimal scanning: Application to segmentation of breast cancer images
    • April
    • P. Belhomme, A. Elmoatz, P. Herlin and D. Bloyet, "Generalized region growing operator with optimal scanning: application to segmentation of breast cancer images", Journal of Microscopy, vol. 186, pp. 41-50, April 1997.
    • (1997) Journal of Microscopy , vol.186 , pp. 41-50
    • Belhomme, P.1    Elmoatz, A.2    Herlin, P.3    Bloyet, D.4
  • 12
    • 44449085639 scopus 로고    scopus 로고
    • http://www.dcs.bbk.ac.uk/~hui/IDA/projects.html
  • 13
    • 44449112953 scopus 로고    scopus 로고
    • User Manual for Neural Network Tool Box, MATLAB
    • User Manual for Neural Network Tool Box, MATLAB
  • 14
    • 44449149547 scopus 로고    scopus 로고
    • http://www.leukemia-lymphoma.org
  • 15
    • 44449085152 scopus 로고    scopus 로고
    • http://www.fpnotebook.com/HEM81.htm
  • 16
    • 44449104800 scopus 로고    scopus 로고
    • http://health.allrefer.com/health/rbc-indices-info.html
  • 17
    • 44449141210 scopus 로고    scopus 로고
    • http://www.nlm.nih.gov/medlineplus/ency/article/000560.htm
  • 18
    • 44449117191 scopus 로고    scopus 로고
    • http://www.nlm.nih.gov/medlineplus/ency/article /000589.htm
  • 19
    • 0346096974 scopus 로고    scopus 로고
    • Direct neural network application for automated cell recognition
    • Part A, The journal of the International Society for Analytical Cytology, Jan, Jan
    • Q. Zheng, B. K. Milthrope, and A. S. Jones, "Direct neural network application for automated cell recognition", Cytometry Part A : The journal of the International Society for Analytical Cytology, vol. 57(1), pp. 1-9, Jan, 2004 Jan.
    • (2004) Cytometry , vol.57 , Issue.1 , pp. 1-9
    • Zheng, Q.1    Milthrope, B.K.2    Jones, A.S.3
  • 21
    • 18744438529 scopus 로고    scopus 로고
    • Artificial neural network-aided image analysis system for cell counting
    • Sjostrom PJ, Frydel BP, Wahlerg LU, "Artificial neural network-aided image analysis system for cell counting", Cytometry, vol. 36, pp. 18-26, 1999.
    • (1999) Cytometry , vol.36 , pp. 18-26
    • Sjostrom, P.J.1    Frydel, B.P.2    Wahlerg, L.U.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.