-
3
-
-
0035793296
-
-
de Lera, A. R.; Alvarez, R.; Lecea, B.; Torrado, A.; Cissío, F. P. Angew. Chem., Int. Ed. 2001, 40, 557-561.
-
(2001)
Angew. Chem., Int. Ed
, vol.40
, pp. 557-561
-
-
de Lera, A.R.1
Alvarez, R.2
Lecea, B.3
Torrado, A.4
Cissío, F.P.5
-
4
-
-
0000535805
-
-
(a) Ross, J. A.; Seiders, R. P.; Lemal, D. M. J. Am. Chem. Soc. 1976, 98, 4325-4327.
-
(1976)
J. Am. Chem. Soc
, vol.98
, pp. 4325-4327
-
-
Ross, J.A.1
Seiders, R.P.2
Lemal, D.M.3
-
7
-
-
0030978884
-
-
(d) Birney, D. M.; Ham, S.; Unruh, G. R. J. Am. Chem. Soc. 1997, 119, 4509-4517.
-
(1997)
J. Am. Chem. Soc
, vol.119
, pp. 4509-4517
-
-
Birney, D.M.1
Ham, S.2
Unruh, G.R.3
-
8
-
-
0037006845
-
-
Rodríguez-Otero, J.; Cabaleiro-Lago, E. Angew. Chem., Int. Ed. 2002, 41, 1147-1150.
-
(2002)
Angew. Chem., Int. Ed
, vol.41
, pp. 1147-1150
-
-
Rodríguez-Otero, J.1
Cabaleiro-Lago, E.2
-
9
-
-
44449116584
-
-
Although the slightly smaller 6-31G** basis set was used throughout their study,5 it was demonstrated that geometric and energetic results, as well as activation energies, were virtually identical to results obtained with the 6-31+G* basis set
-
5 it was demonstrated that geometric and energetic results, as well as activation energies, were virtually identical to results obtained with the 6-31+G* basis set.
-
-
-
-
10
-
-
0037006839
-
-
de Lera, A. R.; Cossío, F. P. Angew. Chem., Int. Ed. 2002, 41, 1150-1152.
-
(2002)
Angew. Chem., Int. Ed
, vol.41
, pp. 1150-1152
-
-
de Lera, A.R.1
Cossío, F.P.2
-
13
-
-
18144374223
-
-
Matito, E.; Solà, M.; Duran, M.; Poater, J. J. Phys. Chem. B 2005, 109, 7591-7593.
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 7591-7593
-
-
Matito, E.1
Solà, M.2
Duran, M.3
Poater, J.4
-
15
-
-
31144465084
-
-
Also see
-
Also see: Matito, E.; Poater, J.; Duran, M.; Solà, M. ChemPhysChem 2006, 7, 111-113.
-
(2006)
ChemPhysChem
, vol.7
, pp. 111-113
-
-
Matito, E.1
Poater, J.2
Duran, M.3
Solà, M.4
-
16
-
-
15044349982
-
-
López, C. S.; Faza, O. N.; Cossío, F. P.; York, D. M.; de Lera, A. R. Chem. Eur. J. 2005, 11, 1734-1738.
-
(2005)
Chem. Eur. J
, vol.11
, pp. 1734-1738
-
-
López, C.S.1
Faza, O.N.2
Cossío, F.P.3
York, D.M.4
de Lera, A.R.5
-
17
-
-
0033616116
-
-
(a) Duncan, J. A.; Azar, J. K.; Beathe, J. C.; Kennedy, S. R.; Wulf, C. M. J. Am. Chem. Soc. 1999, 121, 12029-12034.
-
(1999)
J. Am. Chem. Soc
, vol.121
, pp. 12029-12034
-
-
Duncan, J.A.1
Azar, J.K.2
Beathe, J.C.3
Kennedy, S.R.4
Wulf, C.M.5
-
18
-
-
0000887082
-
-
(b) Duncan, J. A.; Hendricks, R. T.; Kwong, K. S. J. Am. Chem. Soc. 1990, 112, 8433-8442.
-
(1990)
J. Am. Chem. Soc
, vol.112
, pp. 8433-8442
-
-
Duncan, J.A.1
Hendricks, R.T.2
Kwong, K.S.3
-
20
-
-
44449127549
-
-
The 5 → 6 rearrangement has also been studied extensively at the RHF level: Evanseck, J. D.; Thomas, B. E., IV; Spellmeyer, D. C.; Houk, K. N. J. Org. Chem. 1999, 60, 7134-7141.
-
The 5 → 6 rearrangement has also been studied extensively at the RHF level: Evanseck, J. D.; Thomas, B. E., IV; Spellmeyer, D. C.; Houk, K. N. J. Org. Chem. 1999, 60, 7134-7141.
-
-
-
-
21
-
-
0035812783
-
-
The 9 → 11 and 10 → 11 rearrangements have also been studied extensively at the B3LYP level with similar results: Walker, M. J.; Hietbrink, B. N.; Thomas, B. E., IV; Nakamura, K; Kallel, E. A.; Houk, K. N. J. Org. Chem. 2001, 121, 6669-6672.
-
The 9 → 11 and 10 → 11 rearrangements have also been studied extensively at the B3LYP level with similar results: Walker, M. J.; Hietbrink, B. N.; Thomas, B. E., IV; Nakamura, K; Kallel, E. A.; Houk, K. N. J. Org. Chem. 2001, 121, 6669-6672.
-
-
-
-
23
-
-
0345491105
-
-
(b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785-789
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
24
-
-
44449094024
-
-
Frisch, M. J.; Gaussian 98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.
-
(a) Frisch, M. J.; Gaussian 98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.
-
-
-
-
25
-
-
44449144918
-
-
Frisch, M. J.; Gaussian 03, revision D.01; Gaussian, Inc.: Wallingford, CT, 2004..
-
(b) Frisch, M. J.; Gaussian 03, revision D.01; Gaussian, Inc.: Wallingford, CT, 2004..
-
-
-
-
26
-
-
0141991885
-
-
Karlström, G.; Lindh, R.; Malmqvist, P.-Å.; Roos, B. O.; Ryde, U.; Veryazov, V.; Widmark, P.-O.; Cossi, M.; Schimmelpfennig, B.; Neogrady, P.; Seijo, L. Comp. Mater. Sci. 2003, 28, 222-239.
-
(2003)
Comp. Mater. Sci
, vol.28
, pp. 222-239
-
-
Karlström, G.1
Lindh, R.2
Malmqvist, P.-Å.3
Roos, B.O.4
Ryde, U.5
Veryazov, V.6
Widmark, P.-O.7
Cossi, M.8
Schimmelpfennig, B.9
Neogrady, P.10
Seijo, L.11
-
29
-
-
44449107523
-
-
3→4-B3LYP in Figure 3.
-
3→4-B3LYP in Figure 3.
-
-
-
-
30
-
-
44449108059
-
-
A more direct comparison of the energies of TS3→4 and TS12→4 as well as TS9→11 and TS10→11 may be done in terms of their energy differences relative to products 4 and 11, respectively, instead of based on the activation enthalpies calculated with respect to reactants 3, 12, 9, and 10. This leads to a B3LYP enthalpy difference between TS 3→4 and TS12→4 of 10.7 kcal/mol (as opposed to 10.5 kcal/mol, It also leads to a CASPT2//CASSCF enthalpy difference between TS9→11 and TS10→11 of 17.8 kcal/mol (as opposed to 17.2 kcal/mol based on activation enthalpies) and a B3LYP one of 17.0 kcal/mol as opposed to 16.7 kcal/mol based on activation enthalpies
-
10→11 of 17.8 kcal/mol (as opposed to 17.2 kcal/mol based on activation enthalpies) and a B3LYP one of 17.0 kcal/mol (as opposed to 16.7 kcal/mol based on activation enthalpies).
-
-
-
-
31
-
-
44449155273
-
-
In a few cases, some of the tiniest AO contributions had to be omitted in the transition structure bonding and antibonding MOs of Figures 5-7. All of the actual MOs can be found in Supporting Information
-
In a few cases, some of the tiniest AO contributions had to be omitted in the transition structure bonding and antibonding MOs of Figures 5-7. All of the actual MOs can be found in Supporting Information.
-
-
-
-
32
-
-
26844545495
-
-
Cabaleiro-Lago, E. M.; Rodríguez-Otero, J.; García- López, R. M.; Peña-Gallego, A.; Hermida-Ramón, J. M. Chem. Eur. J. 2005, 11, 5966-5974.
-
(2005)
Chem. Eur. J
, vol.11
, pp. 5966-5974
-
-
Cabaleiro-Lago, E.M.1
Rodríguez-Otero, J.2
García- López, R.M.3
Peña-Gallego, A.4
Hermida-Ramón, J.M.5
-
33
-
-
44449092509
-
-
To understand why the presumed allowed rotation of the exocyclic CH 2 in model D of Figure 1 (with CH replacing the NH in this case) is clockwise as shown by the orbital connections, it may be instructive to view this formal [π6s, π2a, or equivalently [π6a, π2s] process, as a [π2s, π2s, π2s, π2a] one
-
a] one.
-
-
-
-
34
-
-
44449158616
-
-
2 group in 5 is predicted to rotate clockwise in model D of Figure 1 as it does in model A, may make the process best described as disrotatory.
-
2 group in 5 is predicted to rotate clockwise in model D of Figure 1 as it does in model A, may make the process best described as disrotatory.
-
-
-
-
35
-
-
44449102099
-
-
3→4 in the 10 → 11 the 3 → 4 rearrangements to be.
-
3→4 in the 10 → 11 the 3 → 4 rearrangements to be.
-
-
-
-
36
-
-
44449098636
-
-
While this manuscript was in revision, we became aware of a paper by Professor Shogo Sakai (Theor. Chem. Acc. DOI 10.1007/s00214-007-0312-8, He performed similar calculations on the electrocyclizations of 3, 5, and 12 and reached similar conclusions, though he used a CiLC-IRC approach and multiconfigurational second-order Møller-Plesset perturbation theory MRMP, instead of CASPT2, to incorporate configuration interaction
-
While this manuscript was in revision, we became aware of a paper by Professor Shogo Sakai (Theor. Chem. Acc. DOI 10.1007/s00214-007-0312-8). He performed similar calculations on the electrocyclizations of 3, 5, and 12 and reached similar conclusions, though he used a CiLC-IRC approach and multiconfigurational second-order Møller-Plesset perturbation theory (MRMP), instead of CASPT2, to incorporate configuration interaction.
-
-
-
|