메뉴 건너뛰기




Volumn 126, Issue 1, 2004, Pages 73-95

Assessing the equivalence of nonparametric regression tests based on spline and local polynomial smoothers

Author keywords

Generalized likelihood ratio test; Goodness of fit; Local polynomial regression; Smoothing parameter; Smoothing spline

Indexed keywords


EID: 4444346604     PISSN: 03783758     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jspi.2003.07.013     Document Type: Article
Times cited : (9)

References (35)
  • 1
    • 0000357414 scopus 로고
    • On the use of nonparametric regression for checking linear relationships
    • Azzalini A. Bowman A.N. On the use of nonparametric regression for checking linear relationships J. Roy. Statist. Soc. Ser. B 55 1993 549-557
    • (1993) J. Roy. Statist. Soc. Ser. B , vol.55 , pp. 549-557
    • Azzalini, A.1    Bowman, A.N.2
  • 2
    • 0002701230 scopus 로고
    • On the use of nonparametric regression for model checking
    • Azzalini A. Bowman A.N. Härdle W. On the use of nonparametric regression for model checking Biometrika 76 1989 1-11
    • (1989) Biometrika , vol.76 , pp. 1-11
    • Azzalini, A.1    Bowman, A.N.2    Härdle, W.3
  • 3
    • 0030537328 scopus 로고    scopus 로고
    • Graphical comparison of nonparametric curves
    • Bowman A. Young S. Graphical comparison of nonparametric curves Appl. Statist. 45 1996 83-98
    • (1996) Appl. Statist. , vol.45 , pp. 83-98
    • Bowman, A.1    Young, S.2
  • 4
    • 2242444502 scopus 로고    scopus 로고
    • Efficient estimation and inferences for varying-coefficient models
    • Cai Z. Fan J. Li R. Efficient estimation and inferences for varying-coefficient models J. Amer. Statist. Assoc. 95 2000 888-902
    • (2000) J. Amer. Statist. Assoc. , vol.95 , pp. 888-902
    • Cai, Z.1    Fan, J.2    Li, R.3
  • 5
    • 38149146463 scopus 로고
    • Testing goodness of fit of polynomial models via spline smoothing techniques
    • Chen J.C. Testing goodness of fit of polynomial models via spline smoothing techniques Statist. Probab. Lett. 19 1994 65-76
    • (1994) Statist. Probab. Lett. , vol.19 , pp. 65-76
    • Chen, J.C.1
  • 6
    • 0000128671 scopus 로고
    • Asymptotics of M-type smoothing splines
    • Cox D. Asymptotics of M-type smoothing splines Ann. Statist. 11 1983 530-551
    • (1983) Ann. Statist. , vol.11 , pp. 530-551
    • Cox, D.1
  • 7
    • 0001060797 scopus 로고
    • A smoothing spline based test of model adequacy in polynomial regression
    • Cox D. Koh E. A smoothing spline based test of model adequacy in polynomial regression Ann. Inst. Statist. Math. 41 1989 383-400
    • (1989) Ann. Inst. Statist. Math. , vol.41 , pp. 383-400
    • Cox, D.1    Koh, E.2
  • 8
    • 0000439838 scopus 로고
    • Testing the (parametric) null model hypothesis in (semiparametric) partial and generalized spline models
    • Cox D. Koh E. Wahba G. Yandell B. Testing the (parametric) null model hypothesis in (semiparametric) partial and generalized spline models Ann. Statist. 16 1988 113-119
    • (1988) Ann. Statist. , vol.16 , pp. 113-119
    • Cox, D.1    Koh, E.2    Wahba, G.3    Yandell, B.4
  • 9
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions
    • Craven P. Wahba G. Smoothing noisy data with spline functions Numer. Math. 31 1979 377-403
    • (1979) Numer. Math. , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 10
    • 0007180814 scopus 로고
    • Oscillation matrices with spline functions
    • Demmler A. Reinsch C. Oscillation matrices with spline functions Numer. Math. 24 1975 375-382
    • (1975) Numer. Math. , vol.24 , pp. 375-382
    • Demmler, A.1    Reinsch, C.2
  • 13
    • 84950450933 scopus 로고
    • Testing the goodness of fit of a linear model via nonparametric regression techniques
    • Eubank R.L. Spiegelman C.H. Testing the goodness of fit of a linear model via nonparametric regression techniques J. Amer. Statist. Assoc. 85 1990 387-392
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 387-392
    • Eubank, R.L.1    Spiegelman, C.H.2
  • 15
    • 0035633948 scopus 로고    scopus 로고
    • Generalized likelihood ratio statistics and Wilks phenomenon
    • Fan J. Zhang C.M. Zhang J. Generalized likelihood ratio statistics and Wilks phenomenon Ann. Statist. 29 2001 153-193
    • (2001) Ann. Statist. , vol.29 , pp. 153-193
    • Fan, J.1    Zhang, C.M.2    Zhang, J.3
  • 16
    • 21344496537 scopus 로고
    • Comparing nonparametric versus parametric regression fits
    • Härdle W. Mammen E. Comparing nonparametric versus parametric regression fits Ann. Statist. 21 1993 1926-1947
    • (1993) Ann. Statist. , vol.21 , pp. 1926-1947
    • Härdle, W.1    Mammen, E.2
  • 17
    • 21144460067 scopus 로고
    • Kernel regression when the boundary region is large, with application to testing the adequacy of polynomial model
    • Hart J.D. Wehrly T.S. Kernel regression when the boundary region is large, with application to testing the adequacy of polynomial model J. Amer. Statist. Assoc. 87 1992 1018-1024
    • (1992) J. Amer. Statist. Assoc. , vol.87 , pp. 1018-1024
    • Hart, J.D.1    Wehrly, T.S.2
  • 19
    • 0041401439 scopus 로고    scopus 로고
    • A roughness-penalty view of kernel smoothing
    • Huang L.S. A roughness-penalty view of kernel smoothing Statist. Probab. Lett. 52 2001 85-89
    • (2001) Statist. Probab. Lett. , vol.52 , pp. 85-89
    • Huang, L.S.1
  • 20
    • 0020112203 scopus 로고
    • Minimax nonparametric detection of signals in white Gaussian noise
    • Ingster Yu.I. Minimax nonparametric detection of signals in white Gaussian noise Problems Inform. Transmission 18 1982 130-140
    • (1982) Problems Inform. Transmission , vol.18 , pp. 130-140
    • Ingster, Yu.I.1
  • 21
    • 0030335166 scopus 로고    scopus 로고
    • Testing for polynomial regression using nonparametric regression techniques
    • Jayasuriya B.R. Testing for polynomial regression using nonparametric regression techniques J. Amer. Statist. Assoc. 91 1996 1626-1630
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 1626-1630
    • Jayasuriya, B.R.1
  • 22
    • 4444380069 scopus 로고    scopus 로고
    • Bounding the eigenvalues of smoothing splines and its application to Bayesian efficiency
    • Department of Statistics, Stanford University, unpublished
    • Kou S.C. 2000. Bounding the eigenvalues of smoothing splines and its application to Bayesian efficiency. Department of Statistics, Stanford University, unpublished.
    • (2000)
    • Kou, S.C.1
  • 23
    • 0000365255 scopus 로고    scopus 로고
    • Minimax nonparametric hypothesis testing: The case of an inhomogeneous alternative
    • Lepski O.V. Spokoiny V.G. Minimax nonparametric hypothesis testing: the case of an inhomogeneous alternative Bernoulli 5 1999 333-358
    • (1999) Bernoulli , vol.5 , pp. 333-358
    • Lepski, O.V.1    Spokoiny, V.G.2
  • 24
    • 0347607207 scopus 로고    scopus 로고
    • F-tests and regression ANOVA based on smoothing spline estimators
    • Ramil-Novo L.A. González-Manteiga W. F-tests and regression ANOVA based on smoothing spline estimators Statist. Sinica 10 2000 819-837
    • (2000) Statist. Sinica , vol.10 , pp. 819-837
    • Ramil-Novo, L.A.1    González-Manteiga, W.2
  • 25
    • 34250516079 scopus 로고
    • Smoothing by spline functions
    • Reinsch C. Smoothing by spline functions Numer. Math. 10 1967 177-183
    • (1967) Numer. Math. , vol.10 , pp. 177-183
    • Reinsch, C.1
  • 27
    • 0000997747 scopus 로고
    • Spline smoothing: The equivalent variable kernel method
    • Silverman B.W. Spline smoothing: the equivalent variable kernel method Ann. Statist. 19 1984 898-916
    • (1984) Ann. Statist. , vol.19 , pp. 898-916
    • Silverman, B.W.1
  • 28
    • 84950454897 scopus 로고
    • A fast and efficient cross-validation method for smoothing parameter choice in spline regression
    • Silverman B.W. A fast and efficient cross-validation method for smoothing parameter choice in spline regression J. Amer. Statist. Assoc. 79 1984 584-589
    • (1984) J. Amer. Statist. Assoc. , vol.79 , pp. 584-589
    • Silverman, B.W.1
  • 30
    • 0043216272 scopus 로고
    • The asymptotic integrated mean squared error for smoothing noisy data by spline functions
    • Department of Statistics, University of Missouri, unpublished
    • Speckman P. 1981. The asymptotic integrated mean squared error for smoothing noisy data by spline functions. Department of Statistics, University of Missouri, unpublished.
    • (1981)
    • Speckman, P.1
  • 31
    • 0000238658 scopus 로고
    • Smoothing noisy data with spline functions
    • Wahba G. Smoothing noisy data with spline functions Numer. Math. 24 1975 383-393
    • (1975) Numer. Math. , vol.24 , pp. 383-393
    • Wahba, G.1
  • 33
    • 0023289192 scopus 로고
    • The use of marginal likelihood for a diagnostic test for the goodness of fit of the simple linear regression model
    • Yanagimoto T. Yanagimoto M. The use of marginal likelihood for a diagnostic test for the goodness of fit of the simple linear regression model Technometrics 29 1987 95-101
    • (1987) Technometrics , vol.29 , pp. 95-101
    • Yanagimoto, T.1    Yanagimoto, M.2
  • 34
    • 0029150201 scopus 로고
    • Non-parametric analysis of covariance
    • Young S.G. Bowman A.W. Non-parametric analysis of covariance Biometrics 51 1995 920-931
    • (1995) Biometrics , vol.51 , pp. 920-931
    • Young, S.G.1    Bowman, A.W.2
  • 35
    • 0242427746 scopus 로고    scopus 로고
    • Adaptive tests of regression functions via multi-scale generalized likelihood ratios
    • Zhang C.M. Adaptive tests of regression functions via multi-scale generalized likelihood ratios Canad. J. Statist. 31 2003 151-157
    • (2003) Canad. J. Statist. , vol.31 , pp. 151-157
    • Zhang, C.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.