-
1
-
-
0000357414
-
On the use of nonparametric regression for checking linear relationships
-
Azzalini, A. and Bowman, A. (1993). On the use of nonparametric regression for checking linear relationships. J. Roy. Statist. Soc. Ser. B 55, 549-557.
-
(1993)
J. Roy. Statist. Soc. Ser. B
, vol.55
, pp. 549-557
-
-
Azzalini, A.1
Bowman, A.2
-
3
-
-
84985534899
-
An approximation to the distribution of quadratic forms in normal random variables
-
Buckley, M. J. and Eagleson, G. K. (1988). An approximation to the distribution of quadratic forms in normal random variables. Austral J. Statist. 30A, 150-159.
-
(1988)
Austral J. Statist.
, vol.30 A
, pp. 150-159
-
-
Buckley, M.J.1
Eagleson, G.K.2
-
4
-
-
0000123142
-
The estimation of the residual variance in nonparametric regression
-
Buckley, M. J., Eagleson, G. K. and Silverman, B. W. (1988). The estimation of the residual variance in nonparametric regression. Biometrika 75, 189-199.
-
(1988)
Biometrika
, vol.75
, pp. 189-199
-
-
Buckley, M.J.1
Eagleson, G.K.2
Silverman, B.W.3
-
5
-
-
38149146463
-
Testing goodness of fit of polynomial models via spline smoothing techniques
-
Chen, J. C. (1994). Testing goodness of fit of polynomial models via spline smoothing techniques. Statist. Probab. Lett. 19, 65-76.
-
(1994)
Statist. Probab. Lett.
, vol.19
, pp. 65-76
-
-
Chen, J.C.1
-
6
-
-
84947318637
-
Locally weighted regression: An approach to regression analysis by local fitting
-
Cleveland, W. S. and Devlin, S. J. (1988). Locally weighted regression: an approach to regression analysis by local fitting. J. Amer. Statist. Assoc. 83, 596-610.
-
(1988)
J. Amer. Statist. Assoc.
, vol.83
, pp. 596-610
-
-
Cleveland, W.S.1
Devlin, S.J.2
-
7
-
-
0000128671
-
Asymptotics for M-type smoothing splines
-
Cox, D. D. (1983). Asymptotics for M-type smoothing splines. Ann. Statist. 11, 530-551.
-
(1983)
Ann. Statist.
, vol.11
, pp. 530-551
-
-
Cox, D.D.1
-
8
-
-
0021481123
-
Multivariate smoothing spline functions
-
Cox, D. D. (1984). Multivariate smoothing spline functions. SIAM J. Numer. Anal. 21, 789-813.
-
(1984)
SIAM J. Numer. Anal.
, vol.21
, pp. 789-813
-
-
Cox, D.D.1
-
9
-
-
34250263445
-
Smoothing noisy data with spline functions
-
Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions. Numer. Math. 31, 377-403.
-
(1979)
Numer. Math.
, vol.31
, pp. 377-403
-
-
Craven, P.1
Wahba, G.2
-
10
-
-
0007180814
-
Oscillation matrices with spline functions
-
Demmler, A. and Reinsch, C. (1975). Oscillation matrices with spline functions. Numer. Math. 24, 375-382.
-
(1975)
Numer. Math.
, vol.24
, pp. 375-382
-
-
Demmler, A.1
Reinsch, C.2
-
11
-
-
0002171003
-
The hat matrix for smoothing splines
-
Eubank, R. L. (1984). The hat matrix for smoothing splines. Statist. Probab. Lett. 2, 9-14.
-
(1984)
Statist. Probab. Lett.
, vol.2
, pp. 9-14
-
-
Eubank, R.L.1
-
13
-
-
0002989306
-
Commonality of cusum, von Neumann and smoothing-based goodness-of-fit tests
-
Eubank, R. L. and Hart, J. D. (1993). Commonality of cusum, von Neumann and smoothing-based goodness-of-fit tests. Biometrika 80, 89-98.
-
(1993)
Biometrika
, vol.80
, pp. 89-98
-
-
Eubank, R.L.1
Hart, J.D.2
-
14
-
-
38249004073
-
Testing for no effect in nonparametric regression
-
Eubank, R. L. and LaRiccia (1993). Testing for no effect in nonparametric regression. J. Statist. Plann. Inference 36, 1-14.
-
(1993)
J. Statist. Plann. Inference
, vol.36
, pp. 1-14
-
-
Eubank, R.L.1
LaRiccia2
-
15
-
-
84950450933
-
Testing the goodness of fit of a linear model via nonparametric regression techniques
-
Eubank, R. L. and Spiegelman, C. H. (1990). Testing the goodness of fit of a linear model via nonparametric regression techniques. J. Amer. Statist. Assoc. 85, 387-392.
-
(1990)
J. Amer. Statist. Assoc.
, vol.85
, pp. 387-392
-
-
Eubank, R.L.1
Spiegelman, C.H.2
-
16
-
-
51249161915
-
Testing the hypothesis of a general linear model using nonparametric regression estimation
-
González-Manteiga, W. and Cao-Abad, R. (1993). Testing the hypothesis of a general linear model using nonparametric regression estimation. Test 2, 161-188.
-
(1993)
Test
, vol.2
, pp. 161-188
-
-
González-Manteiga, W.1
Cao-Abad, R.2
-
18
-
-
0000035920
-
On variance estimation in nonparametric regression
-
Hall, P. and Marron, J. S. (1990). On variance estimation in nonparametric regression. Biometrika 77, 415-419.
-
(1990)
Biometrika
, vol.77
, pp. 415-419
-
-
Hall, P.1
Marron, J.S.2
-
20
-
-
0030335166
-
Testing for polynomial regression using nonparametric regression techniques
-
Jayasuriya, B. R. (1996). Testing for polynomial regression using nonparametric regression techniques. J. Amer. Statist. Assoc. 91, 1626-1631.
-
(1996)
J. Amer. Statist. Assoc.
, vol.91
, pp. 1626-1631
-
-
Jayasuriya, B.R.1
-
21
-
-
21144469931
-
A new class of kernels for nonparametric curve estimation
-
Messer, K. and Goldstein, L.(1993). A new class of kernels for nonparametric curve estimation. Ann. Statist. 21, 179-195.
-
(1993)
Ann. Statist.
, vol.21
, pp. 179-195
-
-
Messer, K.1
Goldstein, L.2
-
22
-
-
21844509828
-
Splines as local smoothers
-
Nychka, D. (1995). Splines as local smoothers. Ann. Statist. 23, 1175-1197.
-
(1995)
Ann. Statist.
, vol.23
, pp. 1175-1197
-
-
Nychka, D.1
-
23
-
-
0022388429
-
The discrete k-functional and spline smoothing of noisy data
-
Ragozin, D. L. (1985). The discrete k-functional and spline smoothing of noisy data. SIAM J. Numer. Anal. 22, 1243-1254.
-
(1985)
SIAM J. Numer. Anal.
, vol.22
, pp. 1243-1254
-
-
Ragozin, D.L.1
-
26
-
-
0000997747
-
Spline smoothing: The equivalent variable kernel method
-
Silverman, B. W. (1984). Spline smoothing: the equivalent variable kernel method. Ann. Statist. 12, 898-916.
-
(1984)
Ann. Statist.
, vol.12
, pp. 898-916
-
-
Silverman, B.W.1
-
27
-
-
0043216272
-
-
Technical Report, Dept. of Mathematics, University of Oregon, Eugene, OR, U.S.A.
-
Speckman, P. (1981). The asymptotic integrated mean square error for smoothing noisy data by splines. Technical Report, Dept. of Mathematics, University of Oregon, Eugene, OR, U.S.A.
-
(1981)
The Asymptotic Integrated Mean Square Error for Smoothing Noisy Data by Splines
-
-
Speckman, P.1
|