-
3
-
-
0001813296
-
Dimension of a quantum-mechanical path
-
Abbot L F and Wise M B 1981 Dimension of a quantum-mechanical path Am. J. Phys. 49 37-9
-
(1981)
Am. J. Phys.
, vol.49
, Issue.1
, pp. 37-39
-
-
Abbot, L.F.1
Wise, M.B.2
-
4
-
-
36049058883
-
Derivation of Schrödinger equation from Newtonian mechanics
-
Nelson E 1966 Derivation of Schrödinger equation from Newtonian mechanics Phys. Rev. 150 1079-85
-
(1966)
Phys. Rev.
, vol.150
, Issue.4
, pp. 1079-1085
-
-
Nelson, E.1
-
6
-
-
0033633763
-
Fractal geometry in quantum mechanics, field theory and spin systems
-
Kroger H 2000 Fractal geometry in quantum mechanics, field theory and spin systems Phys. Rep. 323 81-181
-
(2000)
Phys. Rep.
, vol.323
, Issue.2
, pp. 81-181
-
-
Kroger, H.1
-
16
-
-
4043151477
-
The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
-
Metzler R and Klafter J 2004 The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics J. Phys. A: Math. Gen. 37 R161-208
-
(2004)
J. Phys. A: Math. Gen.
, vol.37
, Issue.31
-
-
Metzler, R.1
Klafter, J.2
-
17
-
-
10844294194
-
Fractal topology and strange kinetics: From percolation theory to problems in cosmic electrodynamics
-
Zelenyi L M and Milovanov A V 2004 Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics Phys.-Usp. 47 749-88
-
(2004)
Phys.-Usp.
, vol.47
, Issue.8
, pp. 749-788
-
-
Zelenyi, L.M.1
Milovanov, A.V.2
-
19
-
-
0034315319
-
Schrödinger equation with fractional Laplacian
-
Hu Y and Kallianpur G 2000 Schrödinger equation with fractional Laplacian Appl. Math. Optim. 42 281-90
-
(2000)
Appl. Math. Optim.
, vol.42
, Issue.3
, pp. 281-290
-
-
Hu, Y.1
Kallianpur, G.2
-
20
-
-
0034363921
-
Fractals and quantum mechanics
-
Laskin N 2000 Fractals and quantum mechanics Chaos 10 780-90
-
(2000)
Chaos
, vol.10
, Issue.4
, pp. 780-790
-
-
Laskin, N.1
-
21
-
-
41349084761
-
Fractional Schrödinger equation
-
Laskin N 2002 Fractional Schrödinger equation Phys. Rev. E 66 056108
-
(2002)
Phys. Rev.
, vol.66
, Issue.5
, pp. 056108
-
-
Laskin, N.1
-
22
-
-
4544250038
-
Time fractional Schrödinger equation
-
Naber M 2004 Time fractional Schrödinger equation J. Math. Phys. 45 3339-52
-
(2004)
J. Math. Phys.
, vol.45
, Issue.8
, pp. 3339-3352
-
-
Naber, M.1
-
23
-
-
33748296360
-
Some applications of fractional Schrödinger equation
-
Guo X and Xu M 2006 Some applications of fractional Schrödinger equation J. Math. Phys. 47 082104
-
(2006)
J. Math. Phys.
, vol.47
, Issue.8
, pp. 082104
-
-
Guo, X.1
Xu, M.2
-
24
-
-
34247620479
-
Generalized fractional Schrödinger equation with space-time fractional derivatives
-
Wong S and Xu M 2007 Generalized fractional Schrödinger equation with space-time fractional derivatives J. Math. Phys. 48 043502
-
(2007)
J. Math. Phys.
, vol.48
, Issue.4
, pp. 043502
-
-
Wong, S.1
Xu, M.2
-
25
-
-
34547601480
-
Some solutions to the space fractional Schrödinger equation using momentum representation method
-
Dong J and Xu M 2007 Some solutions to the space fractional Schrödinger equation using momentum representation method J. Math. Phys. 48 072105
-
(2007)
J. Math. Phys.
, vol.48
, Issue.7
, pp. 072105
-
-
Dong, J.1
Xu, M.2
-
26
-
-
27844481567
-
About fractional supersymmetric quantum mechanics
-
Baleanu D and Muslih S I 2005 About fractional supersymmetric quantum mechanics Czech. J. Phys. 55 1063-6
-
(2005)
Czech. J. Phys.
, vol.55
, Issue.9
, pp. 1063-1066
-
-
Baleanu, D.1
Muslih, S.I.2
-
27
-
-
33846418988
-
Arbitrary powers of D'Alembertian and the Huygens' principle
-
Bollini C G and Giambiagi J J 1993 Arbitrary powers of D'Alembertian and the Huygens' principle J. Math. Phys. 34 610-21
-
(1993)
J. Math. Phys.
, vol.34
, Issue.2
, pp. 610-621
-
-
Bollini, C.G.1
Giambiagi, J.J.2
-
28
-
-
0008022388
-
The pseudodifferential operator square root of the Klein-Gordon equation
-
Lammerzahl C 1993 The pseudodifferential operator square root of the Klein-Gordon equation J. Math. Phys. 34 3918-32
-
(1993)
J. Math. Phys.
, vol.34
, Issue.9
, pp. 3918-3932
-
-
Lammerzahl, C.1
-
29
-
-
0034704716
-
Cubic root of Klein-Gordon equation
-
Plyushchay M S and Traubenberg M R de 2000 Cubic root of Klein-Gordon equation Phys. Lett. B 477 276-84
-
(2000)
Phys. Lett.
, vol.477
, Issue.1-3
, pp. 276-284
-
-
Plyushchay, M.S.1
De Traubenberg, M.R.2
-
30
-
-
23044531544
-
Square-root operator quantization and nonlocality: A review
-
Namsrai Kh and Geramb H V von 2001 Square-root operator quantization and nonlocality: a review Int. J. Theor. Phys. 40 1929-2010
-
(2001)
Int. J. Theor. Phys.
, vol.40
, Issue.11
, pp. 1929-2010
-
-
Kh, N.1
Von Geramb, H.V.2
-
31
-
-
0035399395
-
Simple solution of fractional Dirac equation of order 2/3
-
Raspini A 2001 Simple solution of fractional Dirac equation of order 2/3 Phys. Scr. 64 20-2
-
(2001)
Phys. Scr.
, vol.64
, Issue.1
, pp. 20-22
-
-
Raspini, A.1
-
32
-
-
1842674323
-
Relativistic wave equations with fractional derivatives and pseudo-differential operators
-
Zavada P 2002 Relativistic wave equations with fractional derivatives and pseudo-differential operators J. Appl. Math. 2 163-97
-
(2002)
J. Appl. Math.
, vol.2
, Issue.4
, pp. 163-197
-
-
Zavada, P.1
-
33
-
-
21144474677
-
Canonical quantization of theories containing fractional powers of the D'Alembertian operator
-
Amaral R L P G do and Marino E C 1992 Canonical quantization of theories containing fractional powers of the D'Alembertian operator J. Phys. A: Math. Gen. 25 5183-200
-
(1992)
J. Phys. A: Math. Gen.
, vol.25
, Issue.19
, pp. 5183-5200
-
-
Do, G.P.L.A.R.1
Marino, E.C.2
-
34
-
-
0010829708
-
Canonical quantization of non-local field equations
-
Barci D G, Oxman L E and Rocca M 1996 Canonical quantization of non-local field equations Int. J. Mod. Phys. A 11 2111-26
-
(1996)
Int. J. Mod. Phys.
, vol.11
, Issue.12
, pp. 2111-2126
-
-
Barci, D.G.1
Oxman, L.E.2
Rocca, M.3
-
35
-
-
1842736221
-
Stochastic quantization of nonlocal fields
-
Lim S C and Muniandy S V 2004 Stochastic quantization of nonlocal fields Phys. Lett. A 324 396-405
-
(2004)
Phys. Lett.
, vol.324
, Issue.5-6
, pp. 396-405
-
-
Lim, S.C.1
Muniandy, S.V.2
-
36
-
-
0030209383
-
Convoluted generalized white noise, Schwinger functions and their analytic continuation to Wightman functions
-
Albeverio S, Gottschalk H and Wu J-L 1996 Convoluted generalized white noise, Schwinger functions and their analytic continuation to Wightman functions Rev. Math. Phys. 8 763-817
-
(1996)
Rev. Math. Phys.
, vol.8
, Issue.6
, pp. 763-817
-
-
Albeverio, S.1
Gottschalk, H.2
Wu, J.-L.3
-
37
-
-
0033240058
-
Construction of relativistic quantum fields in the framework of white noise analysis
-
Grothaus M and Streit L 1999 Construction of relativistic quantum fields in the framework of white noise analysis J. Math. Phys. 40 5387-405
-
(1999)
J. Math. Phys.
, vol.40
, Issue.11
, pp. 5387-5405
-
-
Grothaus, M.1
Streit, L.2
-
38
-
-
33644870886
-
Fractional derivative quantum fields at positive temperature
-
Lim S C 2006 Fractional derivative quantum fields at positive temperature Physica A 363 269-81
-
(2006)
Physica
, vol.363
, Issue.2
, pp. 269-281
-
-
Lim, S.C.1
-
39
-
-
34548417204
-
Finite temperature Casimir effect for a massless fractional Klein-Gordon field with fractional Neumann conditions
-
Eab C H, Lim S C and Teo L P 2007 Finite temperature Casimir effect for a massless fractional Klein-Gordon field with fractional Neumann conditions J. Math. Phys. 48 082301
-
(2007)
J. Math. Phys.
, vol.48
, Issue.8
, pp. 082301
-
-
Eab, C.H.1
Lim, S.C.2
Teo, L.P.3
-
44
-
-
0003047077
-
Mass generation by self-interaction in non-Minkowskian spacetimes
-
Ford L H and Yoshimura T 1979 Mass generation by self-interaction in non-Minkowskian spacetimes Phys. Lett. A 70 89-91
-
(1979)
Phys. Lett.
, vol.70
, Issue.2
, pp. 89-91
-
-
Ford, L.H.1
Yoshimura, T.2
-
45
-
-
33744666472
-
Symmetry breaking and mass generation by space-time topology
-
Toms D J 1980 Symmetry breaking and mass generation by space-time topology Phys. Rev. D 21 2805-17
-
(1980)
Phys. Rev.
, vol.21
, Issue.10
, pp. 2805-2817
-
-
Toms, D.J.1
-
47
-
-
0008642801
-
Topological generation of gauge field mass by toroidal spacetime
-
Actor A 1980 Topological generation of gauge field mass by toroidal spacetime Class. Quantum Grav. 7 663-83
-
(1980)
Class. Quantum Grav.
, vol.7
, pp. 663-683
-
-
Actor, A.1
-
48
-
-
35848932037
-
Topological gauge field mass generation by toroidal spacetime
-
Kirsten K 1993 Topological gauge field mass generation by toroidal spacetime J. Phys. A: Math. Gen. 26 2421-35
-
(1993)
J. Phys. A: Math. Gen.
, vol.26
, Issue.10
, pp. 2421-2435
-
-
Kirsten, K.1
-
49
-
-
21344495778
-
Topological symmetry breaking in self-interacting theories on toroidal space-time
-
Elizalde E and Kirsten K 1994 Topological symmetry breaking in self-interacting theories on toroidal space-time J. Math. Phys. 35 1260-73
-
(1994)
J. Math. Phys.
, vol.35
, Issue.3
, pp. 1260-1273
-
-
Elizalde, E.1
Kirsten, K.2
-
50
-
-
33645916849
-
Zeta function regularization of path integrals in curved space time
-
Hawking S W 1977 Zeta function regularization of path integrals in curved space time Commun. Math. Phys. 55 139-70
-
(1977)
Commun. Math. Phys.
, vol.55
, Issue.2
, pp. 133-170
-
-
Hawking, S.W.1
-
54
-
-
21844521942
-
Applications of the Mellin-Barnes integral representation
-
Elizalde E, Kirsten K and Zerbini S 1995 Applications of the Mellin-Barnes integral representation J. Phys. A: Math. Gen. 28 617-29
-
(1995)
J. Phys. A: Math. Gen.
, vol.28
, Issue.3
, pp. 617-629
-
-
Elizalde, E.1
Kirsten, K.2
Zerbini, S.3
-
55
-
-
35848943916
-
Finite temperature Casimir energy in closed rectangular cavities: A rigorous derivation based on zeta function technique
-
Lim S C and Teo L P 2007 Finite temperature Casimir energy in closed rectangular cavities: a rigorous derivation based on zeta function technique J. Phys. A: Math. Theor. 40 11645-74
-
(2007)
J. Phys. A: Math. Theor.
, vol.40
, Issue.38
, pp. 11645-11674
-
-
Lim, S.C.1
Teo, L.P.2
-
57
-
-
21844502699
-
Path integral representation for fractional Brownian motion
-
Sebastian K L 1995 Path integral representation for fractional Brownian motion J. Phys. A: Math. Gen. 28 4305
-
(1995)
J. Phys. A: Math. Gen.
, vol.28
, Issue.15
, pp. 4305
-
-
Sebastian, K.L.1
-
58
-
-
33748693503
-
Path integral representation of fractional harmonic oscillator
-
Eab C H and Lim S C 2006 Path integral representation of fractional harmonic oscillator Physica A 371 303-16
-
(2006)
Physica
, vol.371
, Issue.2
, pp. 303-316
-
-
Eab, C.H.1
Lim, S.C.2
-
59
-
-
34547313503
-
Locally self-similar fractional oscillator processes
-
Lim S C, Li M and Teo L P 2007 Locally self-similar fractional oscillator processes Fluct. Noise Lett. 7 L169-79
-
(2007)
Fluct. Noise Lett.
, vol.7
, Issue.2
-
-
Lim, S.C.1
Li, M.2
Teo, L.P.3
-
60
-
-
33646771003
-
Riemann-Liouville and Weyl fractional oscillator processes
-
Lim S C and Eab C H 2006 Riemann-Liouville and Weyl fractional oscillator processes Phys. Lett. A 335 87-93
-
(2006)
Phys. Lett.
, vol.355
, Issue.2
, pp. 87-93
-
-
Lim, S.C.1
Eab, C.H.2
-
63
-
-
2342547099
-
Real harmonizable multifractional Levy motions
-
Lacaux C 2004 Real harmonizable multifractional Levy motions Ann. Inst. Henri Poincare 40 259-77
-
(2004)
Ann. Inst. Henri Poincare
, vol.40
, pp. 259-277
-
-
Lacaux, C.1
-
64
-
-
34249718498
-
Weyl and Riemann-Liouville multifractional Ornstein-Uhlenbeck processes
-
Lim S C and Teo L P 2007 Weyl and Riemann-Liouville multifractional Ornstein-Uhlenbeck processes J. Phys. A: Theo. Gen. 40 6035-60
-
(2007)
J. Phys. A: Theo. Gen.
, vol.40
, pp. 6035-6060
-
-
Lim, S.C.1
Teo, L.P.2
-
65
-
-
0007743184
-
Zur Theorie allgemeiner Zetafunktionen
-
Epstein P 1903 Zur Theorie allgemeiner Zetafunktionen Math. Ann. 56 615-44
-
(1903)
Math. Ann.
, vol.56
, Issue.4
, pp. 615-644
-
-
Epstein, P.1
-
66
-
-
34250962558
-
Zur Theorie allgemeiner Zetafunktionen II
-
Epstein P 1907 Zur Theorie allgemeiner Zetafunktionen II Math. Ann. 65 205-16
-
(1907)
Math. Ann.
, vol.65
, pp. 205-216
-
-
Epstein, P.1
-
68
-
-
0001792412
-
Determinants of Laplacians
-
Sarnak P 1987 Determinants of Laplacians Commun. Math. Phys. 110 113-20
-
(1987)
Commun. Math. Phys.
, vol.110
, Issue.1
, pp. 113-120
-
-
Sarnak, P.1
-
69
-
-
34347216683
-
Zeta functions, special functions and the Lerch formula
-
Spreafico M 2006 Zeta functions, special functions and the Lerch formula Proc. R. Soc. Ed. 136A 865-89
-
(2006)
Proc. R. Soc. Ed.
, vol.136
, pp. 865-889
-
-
Spreafico, M.1
-
70
-
-
0001225575
-
Determinants of Laplacians and multiple Gamma functions
-
Vardi I 1988 Determinants of Laplacians and multiple Gamma functions SIAM J. Math. Anal. 19 493-507
-
(1988)
SIAM J. Math. Anal.
, vol.19
, Issue.2
, pp. 493-507
-
-
Vardi, I.1
-
71
-
-
22244446790
-
Spectral functions, special functions and the Selberg zeta function
-
Voros A 1987 Spectral functions, special functions and the Selberg zeta function Commun. Math. Phys. 110 439-65
-
(1987)
Commun. Math. Phys.
, vol.110
, Issue.3
, pp. 439-465
-
-
Voros, A.1
-
72
-
-
0041185013
-
Regularization of general multidimensional Epstein zeta-functions
-
Elizalde E and Romeo A 1989 Regularization of general multidimensional Epstein zeta-functions Rev. Math. Phys. 1 113-28
-
(1989)
Rev. Math. Phys.
, vol.1
, Issue.1
, pp. 113-128
-
-
Elizalde, E.1
Romeo, A.2
-
73
-
-
0001472979
-
Inhomogeneous multidimensional Epstein zeta functions
-
Kirsten K 1991 Inhomogeneous multidimensional Epstein zeta functions J. Math. Phys. 32 3008-14
-
(1991)
J. Math. Phys.
, vol.32
, Issue.11
, pp. 3008-3014
-
-
Kirsten, K.1
-
74
-
-
33750148231
-
Generalized multidimensional Epstein zeta functions
-
Kirsten K 1994 Generalized multidimensional Epstein zeta functions J. Math. Phys. 35 459-70
-
(1994)
J. Math. Phys.
, vol.35
, Issue.1
, pp. 459-470
-
-
Kirsten, K.1
-
75
-
-
21344486236
-
An extension of the Chowla-Selberg formula useful in quantizing with the Wheeler-DeWitt equation
-
Elizalde E 1994 An extension of the Chowla-Selberg formula useful in quantizing with the Wheeler-DeWitt equation J. Phys. A: Math. Gen. 27 3775-85
-
(1994)
J. Phys. A: Math. Gen.
, vol.27
, Issue.11
, pp. 3775-3785
-
-
Elizalde, E.1
-
77
-
-
0032210125
-
Multidimensional extension of the generalized Chowla-Selberg formula
-
Elizalde E 1998 Multidimensional extension of the generalized Chowla-Selberg formula Commun. Math. Phys. 198 83-95
-
(1998)
Commun. Math. Phys.
, vol.198
, Issue.1
, pp. 83-95
-
-
Elizalde, E.1
-
78
-
-
0001752851
-
Zeta functions: Formulas and applications
-
Elizalde E 2000 Zeta functions: formulas and applications J. Comput. Appl. Math. 118 125-42 Higher transcendental functions and their applications
-
(2000)
J. Comput. Appl. Math.
, vol.118
, Issue.1-2
, pp. 125-142
-
-
Elizalde, E.1
-
79
-
-
0035853666
-
Explicit zeta functions for bosonic and fermionic fields on a non-commutative toroidal spacetime
-
Elizalde E 2001 Explicit zeta functions for bosonic and fermionic fields on a non-commutative toroidal spacetime J. Phys. A: Math. Gen. 34 3025-35
-
(2001)
J. Phys. A: Math. Gen.
, vol.34
, Issue.14
, pp. 3025-3035
-
-
Elizalde, E.1
|