메뉴 건너뛰기




Volumn 41, Issue 14, 2008, Pages

Topological symmetry breaking of self-interacting fractional Klein-Gordon field theories on toroidal spacetime

Author keywords

[No Author keywords available]

Indexed keywords


EID: 43949122962     PISSN: 17518113     EISSN: 17518121     Source Type: Journal    
DOI: 10.1088/1751-8113/41/14/145403     Document Type: Article
Times cited : (10)

References (81)
  • 3
    • 0001813296 scopus 로고
    • Dimension of a quantum-mechanical path
    • Abbot L F and Wise M B 1981 Dimension of a quantum-mechanical path Am. J. Phys. 49 37-9
    • (1981) Am. J. Phys. , vol.49 , Issue.1 , pp. 37-39
    • Abbot, L.F.1    Wise, M.B.2
  • 4
    • 36049058883 scopus 로고
    • Derivation of Schrödinger equation from Newtonian mechanics
    • Nelson E 1966 Derivation of Schrödinger equation from Newtonian mechanics Phys. Rev. 150 1079-85
    • (1966) Phys. Rev. , vol.150 , Issue.4 , pp. 1079-1085
    • Nelson, E.1
  • 6
    • 0033633763 scopus 로고    scopus 로고
    • Fractal geometry in quantum mechanics, field theory and spin systems
    • Kroger H 2000 Fractal geometry in quantum mechanics, field theory and spin systems Phys. Rep. 323 81-181
    • (2000) Phys. Rep. , vol.323 , Issue.2 , pp. 81-181
    • Kroger, H.1
  • 16
    • 4043151477 scopus 로고    scopus 로고
    • The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
    • Metzler R and Klafter J 2004 The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics J. Phys. A: Math. Gen. 37 R161-208
    • (2004) J. Phys. A: Math. Gen. , vol.37 , Issue.31
    • Metzler, R.1    Klafter, J.2
  • 17
    • 10844294194 scopus 로고    scopus 로고
    • Fractal topology and strange kinetics: From percolation theory to problems in cosmic electrodynamics
    • Zelenyi L M and Milovanov A V 2004 Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics Phys.-Usp. 47 749-88
    • (2004) Phys.-Usp. , vol.47 , Issue.8 , pp. 749-788
    • Zelenyi, L.M.1    Milovanov, A.V.2
  • 19
    • 0034315319 scopus 로고    scopus 로고
    • Schrödinger equation with fractional Laplacian
    • Hu Y and Kallianpur G 2000 Schrödinger equation with fractional Laplacian Appl. Math. Optim. 42 281-90
    • (2000) Appl. Math. Optim. , vol.42 , Issue.3 , pp. 281-290
    • Hu, Y.1    Kallianpur, G.2
  • 20
    • 0034363921 scopus 로고    scopus 로고
    • Fractals and quantum mechanics
    • Laskin N 2000 Fractals and quantum mechanics Chaos 10 780-90
    • (2000) Chaos , vol.10 , Issue.4 , pp. 780-790
    • Laskin, N.1
  • 21
    • 41349084761 scopus 로고    scopus 로고
    • Fractional Schrödinger equation
    • Laskin N 2002 Fractional Schrödinger equation Phys. Rev. E 66 056108
    • (2002) Phys. Rev. , vol.66 , Issue.5 , pp. 056108
    • Laskin, N.1
  • 22
    • 4544250038 scopus 로고    scopus 로고
    • Time fractional Schrödinger equation
    • Naber M 2004 Time fractional Schrödinger equation J. Math. Phys. 45 3339-52
    • (2004) J. Math. Phys. , vol.45 , Issue.8 , pp. 3339-3352
    • Naber, M.1
  • 23
    • 33748296360 scopus 로고    scopus 로고
    • Some applications of fractional Schrödinger equation
    • Guo X and Xu M 2006 Some applications of fractional Schrödinger equation J. Math. Phys. 47 082104
    • (2006) J. Math. Phys. , vol.47 , Issue.8 , pp. 082104
    • Guo, X.1    Xu, M.2
  • 24
    • 34247620479 scopus 로고    scopus 로고
    • Generalized fractional Schrödinger equation with space-time fractional derivatives
    • Wong S and Xu M 2007 Generalized fractional Schrödinger equation with space-time fractional derivatives J. Math. Phys. 48 043502
    • (2007) J. Math. Phys. , vol.48 , Issue.4 , pp. 043502
    • Wong, S.1    Xu, M.2
  • 25
    • 34547601480 scopus 로고    scopus 로고
    • Some solutions to the space fractional Schrödinger equation using momentum representation method
    • Dong J and Xu M 2007 Some solutions to the space fractional Schrödinger equation using momentum representation method J. Math. Phys. 48 072105
    • (2007) J. Math. Phys. , vol.48 , Issue.7 , pp. 072105
    • Dong, J.1    Xu, M.2
  • 26
    • 27844481567 scopus 로고    scopus 로고
    • About fractional supersymmetric quantum mechanics
    • Baleanu D and Muslih S I 2005 About fractional supersymmetric quantum mechanics Czech. J. Phys. 55 1063-6
    • (2005) Czech. J. Phys. , vol.55 , Issue.9 , pp. 1063-1066
    • Baleanu, D.1    Muslih, S.I.2
  • 27
    • 33846418988 scopus 로고
    • Arbitrary powers of D'Alembertian and the Huygens' principle
    • Bollini C G and Giambiagi J J 1993 Arbitrary powers of D'Alembertian and the Huygens' principle J. Math. Phys. 34 610-21
    • (1993) J. Math. Phys. , vol.34 , Issue.2 , pp. 610-621
    • Bollini, C.G.1    Giambiagi, J.J.2
  • 28
    • 0008022388 scopus 로고
    • The pseudodifferential operator square root of the Klein-Gordon equation
    • Lammerzahl C 1993 The pseudodifferential operator square root of the Klein-Gordon equation J. Math. Phys. 34 3918-32
    • (1993) J. Math. Phys. , vol.34 , Issue.9 , pp. 3918-3932
    • Lammerzahl, C.1
  • 29
    • 0034704716 scopus 로고    scopus 로고
    • Cubic root of Klein-Gordon equation
    • Plyushchay M S and Traubenberg M R de 2000 Cubic root of Klein-Gordon equation Phys. Lett. B 477 276-84
    • (2000) Phys. Lett. , vol.477 , Issue.1-3 , pp. 276-284
    • Plyushchay, M.S.1    De Traubenberg, M.R.2
  • 30
    • 23044531544 scopus 로고    scopus 로고
    • Square-root operator quantization and nonlocality: A review
    • Namsrai Kh and Geramb H V von 2001 Square-root operator quantization and nonlocality: a review Int. J. Theor. Phys. 40 1929-2010
    • (2001) Int. J. Theor. Phys. , vol.40 , Issue.11 , pp. 1929-2010
    • Kh, N.1    Von Geramb, H.V.2
  • 31
    • 0035399395 scopus 로고    scopus 로고
    • Simple solution of fractional Dirac equation of order 2/3
    • Raspini A 2001 Simple solution of fractional Dirac equation of order 2/3 Phys. Scr. 64 20-2
    • (2001) Phys. Scr. , vol.64 , Issue.1 , pp. 20-22
    • Raspini, A.1
  • 32
    • 1842674323 scopus 로고    scopus 로고
    • Relativistic wave equations with fractional derivatives and pseudo-differential operators
    • Zavada P 2002 Relativistic wave equations with fractional derivatives and pseudo-differential operators J. Appl. Math. 2 163-97
    • (2002) J. Appl. Math. , vol.2 , Issue.4 , pp. 163-197
    • Zavada, P.1
  • 33
    • 21144474677 scopus 로고
    • Canonical quantization of theories containing fractional powers of the D'Alembertian operator
    • Amaral R L P G do and Marino E C 1992 Canonical quantization of theories containing fractional powers of the D'Alembertian operator J. Phys. A: Math. Gen. 25 5183-200
    • (1992) J. Phys. A: Math. Gen. , vol.25 , Issue.19 , pp. 5183-5200
    • Do, G.P.L.A.R.1    Marino, E.C.2
  • 34
    • 0010829708 scopus 로고    scopus 로고
    • Canonical quantization of non-local field equations
    • Barci D G, Oxman L E and Rocca M 1996 Canonical quantization of non-local field equations Int. J. Mod. Phys. A 11 2111-26
    • (1996) Int. J. Mod. Phys. , vol.11 , Issue.12 , pp. 2111-2126
    • Barci, D.G.1    Oxman, L.E.2    Rocca, M.3
  • 35
    • 1842736221 scopus 로고    scopus 로고
    • Stochastic quantization of nonlocal fields
    • Lim S C and Muniandy S V 2004 Stochastic quantization of nonlocal fields Phys. Lett. A 324 396-405
    • (2004) Phys. Lett. , vol.324 , Issue.5-6 , pp. 396-405
    • Lim, S.C.1    Muniandy, S.V.2
  • 36
    • 0030209383 scopus 로고    scopus 로고
    • Convoluted generalized white noise, Schwinger functions and their analytic continuation to Wightman functions
    • Albeverio S, Gottschalk H and Wu J-L 1996 Convoluted generalized white noise, Schwinger functions and their analytic continuation to Wightman functions Rev. Math. Phys. 8 763-817
    • (1996) Rev. Math. Phys. , vol.8 , Issue.6 , pp. 763-817
    • Albeverio, S.1    Gottschalk, H.2    Wu, J.-L.3
  • 37
    • 0033240058 scopus 로고    scopus 로고
    • Construction of relativistic quantum fields in the framework of white noise analysis
    • Grothaus M and Streit L 1999 Construction of relativistic quantum fields in the framework of white noise analysis J. Math. Phys. 40 5387-405
    • (1999) J. Math. Phys. , vol.40 , Issue.11 , pp. 5387-5405
    • Grothaus, M.1    Streit, L.2
  • 38
    • 33644870886 scopus 로고    scopus 로고
    • Fractional derivative quantum fields at positive temperature
    • Lim S C 2006 Fractional derivative quantum fields at positive temperature Physica A 363 269-81
    • (2006) Physica , vol.363 , Issue.2 , pp. 269-281
    • Lim, S.C.1
  • 39
    • 34548417204 scopus 로고    scopus 로고
    • Finite temperature Casimir effect for a massless fractional Klein-Gordon field with fractional Neumann conditions
    • Eab C H, Lim S C and Teo L P 2007 Finite temperature Casimir effect for a massless fractional Klein-Gordon field with fractional Neumann conditions J. Math. Phys. 48 082301
    • (2007) J. Math. Phys. , vol.48 , Issue.8 , pp. 082301
    • Eab, C.H.1    Lim, S.C.2    Teo, L.P.3
  • 44
    • 0003047077 scopus 로고
    • Mass generation by self-interaction in non-Minkowskian spacetimes
    • Ford L H and Yoshimura T 1979 Mass generation by self-interaction in non-Minkowskian spacetimes Phys. Lett. A 70 89-91
    • (1979) Phys. Lett. , vol.70 , Issue.2 , pp. 89-91
    • Ford, L.H.1    Yoshimura, T.2
  • 45
    • 33744666472 scopus 로고
    • Symmetry breaking and mass generation by space-time topology
    • Toms D J 1980 Symmetry breaking and mass generation by space-time topology Phys. Rev. D 21 2805-17
    • (1980) Phys. Rev. , vol.21 , Issue.10 , pp. 2805-2817
    • Toms, D.J.1
  • 47
    • 0008642801 scopus 로고
    • Topological generation of gauge field mass by toroidal spacetime
    • Actor A 1980 Topological generation of gauge field mass by toroidal spacetime Class. Quantum Grav. 7 663-83
    • (1980) Class. Quantum Grav. , vol.7 , pp. 663-683
    • Actor, A.1
  • 48
    • 35848932037 scopus 로고
    • Topological gauge field mass generation by toroidal spacetime
    • Kirsten K 1993 Topological gauge field mass generation by toroidal spacetime J. Phys. A: Math. Gen. 26 2421-35
    • (1993) J. Phys. A: Math. Gen. , vol.26 , Issue.10 , pp. 2421-2435
    • Kirsten, K.1
  • 49
    • 21344495778 scopus 로고
    • Topological symmetry breaking in self-interacting theories on toroidal space-time
    • Elizalde E and Kirsten K 1994 Topological symmetry breaking in self-interacting theories on toroidal space-time J. Math. Phys. 35 1260-73
    • (1994) J. Math. Phys. , vol.35 , Issue.3 , pp. 1260-1273
    • Elizalde, E.1    Kirsten, K.2
  • 50
    • 33645916849 scopus 로고
    • Zeta function regularization of path integrals in curved space time
    • Hawking S W 1977 Zeta function regularization of path integrals in curved space time Commun. Math. Phys. 55 139-70
    • (1977) Commun. Math. Phys. , vol.55 , Issue.2 , pp. 133-170
    • Hawking, S.W.1
  • 54
    • 21844521942 scopus 로고
    • Applications of the Mellin-Barnes integral representation
    • Elizalde E, Kirsten K and Zerbini S 1995 Applications of the Mellin-Barnes integral representation J. Phys. A: Math. Gen. 28 617-29
    • (1995) J. Phys. A: Math. Gen. , vol.28 , Issue.3 , pp. 617-629
    • Elizalde, E.1    Kirsten, K.2    Zerbini, S.3
  • 55
    • 35848943916 scopus 로고    scopus 로고
    • Finite temperature Casimir energy in closed rectangular cavities: A rigorous derivation based on zeta function technique
    • Lim S C and Teo L P 2007 Finite temperature Casimir energy in closed rectangular cavities: a rigorous derivation based on zeta function technique J. Phys. A: Math. Theor. 40 11645-74
    • (2007) J. Phys. A: Math. Theor. , vol.40 , Issue.38 , pp. 11645-11674
    • Lim, S.C.1    Teo, L.P.2
  • 57
    • 21844502699 scopus 로고
    • Path integral representation for fractional Brownian motion
    • Sebastian K L 1995 Path integral representation for fractional Brownian motion J. Phys. A: Math. Gen. 28 4305
    • (1995) J. Phys. A: Math. Gen. , vol.28 , Issue.15 , pp. 4305
    • Sebastian, K.L.1
  • 58
    • 33748693503 scopus 로고    scopus 로고
    • Path integral representation of fractional harmonic oscillator
    • Eab C H and Lim S C 2006 Path integral representation of fractional harmonic oscillator Physica A 371 303-16
    • (2006) Physica , vol.371 , Issue.2 , pp. 303-316
    • Eab, C.H.1    Lim, S.C.2
  • 59
    • 34547313503 scopus 로고    scopus 로고
    • Locally self-similar fractional oscillator processes
    • Lim S C, Li M and Teo L P 2007 Locally self-similar fractional oscillator processes Fluct. Noise Lett. 7 L169-79
    • (2007) Fluct. Noise Lett. , vol.7 , Issue.2
    • Lim, S.C.1    Li, M.2    Teo, L.P.3
  • 60
    • 33646771003 scopus 로고    scopus 로고
    • Riemann-Liouville and Weyl fractional oscillator processes
    • Lim S C and Eab C H 2006 Riemann-Liouville and Weyl fractional oscillator processes Phys. Lett. A 335 87-93
    • (2006) Phys. Lett. , vol.355 , Issue.2 , pp. 87-93
    • Lim, S.C.1    Eab, C.H.2
  • 63
    • 2342547099 scopus 로고    scopus 로고
    • Real harmonizable multifractional Levy motions
    • Lacaux C 2004 Real harmonizable multifractional Levy motions Ann. Inst. Henri Poincare 40 259-77
    • (2004) Ann. Inst. Henri Poincare , vol.40 , pp. 259-277
    • Lacaux, C.1
  • 64
    • 34249718498 scopus 로고    scopus 로고
    • Weyl and Riemann-Liouville multifractional Ornstein-Uhlenbeck processes
    • Lim S C and Teo L P 2007 Weyl and Riemann-Liouville multifractional Ornstein-Uhlenbeck processes J. Phys. A: Theo. Gen. 40 6035-60
    • (2007) J. Phys. A: Theo. Gen. , vol.40 , pp. 6035-6060
    • Lim, S.C.1    Teo, L.P.2
  • 65
    • 0007743184 scopus 로고
    • Zur Theorie allgemeiner Zetafunktionen
    • Epstein P 1903 Zur Theorie allgemeiner Zetafunktionen Math. Ann. 56 615-44
    • (1903) Math. Ann. , vol.56 , Issue.4 , pp. 615-644
    • Epstein, P.1
  • 66
    • 34250962558 scopus 로고
    • Zur Theorie allgemeiner Zetafunktionen II
    • Epstein P 1907 Zur Theorie allgemeiner Zetafunktionen II Math. Ann. 65 205-16
    • (1907) Math. Ann. , vol.65 , pp. 205-216
    • Epstein, P.1
  • 68
    • 0001792412 scopus 로고
    • Determinants of Laplacians
    • Sarnak P 1987 Determinants of Laplacians Commun. Math. Phys. 110 113-20
    • (1987) Commun. Math. Phys. , vol.110 , Issue.1 , pp. 113-120
    • Sarnak, P.1
  • 69
    • 34347216683 scopus 로고    scopus 로고
    • Zeta functions, special functions and the Lerch formula
    • Spreafico M 2006 Zeta functions, special functions and the Lerch formula Proc. R. Soc. Ed. 136A 865-89
    • (2006) Proc. R. Soc. Ed. , vol.136 , pp. 865-889
    • Spreafico, M.1
  • 70
    • 0001225575 scopus 로고
    • Determinants of Laplacians and multiple Gamma functions
    • Vardi I 1988 Determinants of Laplacians and multiple Gamma functions SIAM J. Math. Anal. 19 493-507
    • (1988) SIAM J. Math. Anal. , vol.19 , Issue.2 , pp. 493-507
    • Vardi, I.1
  • 71
    • 22244446790 scopus 로고
    • Spectral functions, special functions and the Selberg zeta function
    • Voros A 1987 Spectral functions, special functions and the Selberg zeta function Commun. Math. Phys. 110 439-65
    • (1987) Commun. Math. Phys. , vol.110 , Issue.3 , pp. 439-465
    • Voros, A.1
  • 72
    • 0041185013 scopus 로고
    • Regularization of general multidimensional Epstein zeta-functions
    • Elizalde E and Romeo A 1989 Regularization of general multidimensional Epstein zeta-functions Rev. Math. Phys. 1 113-28
    • (1989) Rev. Math. Phys. , vol.1 , Issue.1 , pp. 113-128
    • Elizalde, E.1    Romeo, A.2
  • 73
    • 0001472979 scopus 로고
    • Inhomogeneous multidimensional Epstein zeta functions
    • Kirsten K 1991 Inhomogeneous multidimensional Epstein zeta functions J. Math. Phys. 32 3008-14
    • (1991) J. Math. Phys. , vol.32 , Issue.11 , pp. 3008-3014
    • Kirsten, K.1
  • 74
    • 33750148231 scopus 로고
    • Generalized multidimensional Epstein zeta functions
    • Kirsten K 1994 Generalized multidimensional Epstein zeta functions J. Math. Phys. 35 459-70
    • (1994) J. Math. Phys. , vol.35 , Issue.1 , pp. 459-470
    • Kirsten, K.1
  • 75
    • 21344486236 scopus 로고
    • An extension of the Chowla-Selberg formula useful in quantizing with the Wheeler-DeWitt equation
    • Elizalde E 1994 An extension of the Chowla-Selberg formula useful in quantizing with the Wheeler-DeWitt equation J. Phys. A: Math. Gen. 27 3775-85
    • (1994) J. Phys. A: Math. Gen. , vol.27 , Issue.11 , pp. 3775-3785
    • Elizalde, E.1
  • 77
    • 0032210125 scopus 로고    scopus 로고
    • Multidimensional extension of the generalized Chowla-Selberg formula
    • Elizalde E 1998 Multidimensional extension of the generalized Chowla-Selberg formula Commun. Math. Phys. 198 83-95
    • (1998) Commun. Math. Phys. , vol.198 , Issue.1 , pp. 83-95
    • Elizalde, E.1
  • 78
    • 0001752851 scopus 로고    scopus 로고
    • Zeta functions: Formulas and applications
    • Elizalde E 2000 Zeta functions: formulas and applications J. Comput. Appl. Math. 118 125-42 Higher transcendental functions and their applications
    • (2000) J. Comput. Appl. Math. , vol.118 , Issue.1-2 , pp. 125-142
    • Elizalde, E.1
  • 79
    • 0035853666 scopus 로고    scopus 로고
    • Explicit zeta functions for bosonic and fermionic fields on a non-commutative toroidal spacetime
    • Elizalde E 2001 Explicit zeta functions for bosonic and fermionic fields on a non-commutative toroidal spacetime J. Phys. A: Math. Gen. 34 3025-35
    • (2001) J. Phys. A: Math. Gen. , vol.34 , Issue.14 , pp. 3025-3035
    • Elizalde, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.