-
1
-
-
0034349012
-
SRB measures for partially hyperbolic systems whose central direction is mostly expanding
-
J. F. Alves, C. Bonatti and M. Viana. SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math. 140 (2000), 351-398.
-
(2000)
Invent. Math
, vol.140
, pp. 351-398
-
-
Alves, J.F.1
Bonatti, C.2
Viana, M.3
-
2
-
-
0033636267
-
SRB measures for non-hyperbolic systems with multidimensional expansion
-
J. F. Alves. SRB measures for non-hyperbolic systems with multidimensional expansion. Ann. Sci. École Norm. Sup. 33 (2000), 1-32.
-
(2000)
Ann. Sci. École Norm. Sup
, vol.33
, pp. 1-32
-
-
Alves, J.F.1
-
4
-
-
1642380474
-
Equilibrium states for random non-uniformly expanding maps
-
A. Arbieto, C. Matheus and K. Oliveira. Equilibrium states for random non-uniformly expanding maps. Nonlinearity 17 (2004), 581-593.
-
(2004)
Nonlinearity
, vol.17
, pp. 581-593
-
-
Arbieto, A.1
Matheus, C.2
Oliveira, K.3
-
5
-
-
0039491584
-
Equilibrium states for S-unimodal maps
-
H. Bruin and G. Keller. Equilibrium states for S-unimodal maps. Ergod. Th. & Dynam. Sys. 18 (1998), 765-789.
-
(1998)
Ergod. Th. & Dynam. Sys
, vol.18
, pp. 765-789
-
-
Bruin, H.1
Keller, G.2
-
6
-
-
0036459262
-
Decay of correlations for piecewise invertible maps in higher dimensions
-
J. Buzzi and V. Maume-Deschamps. Decay of correlations for piecewise invertible maps in higher dimensions. Israel J. Math. 131 (2002), 203-220.
-
(2002)
Israel J. Math
, vol.131
, pp. 203-220
-
-
Buzzi, J.1
Maume-Deschamps, V.2
-
7
-
-
0003208028
-
Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms
-
Springer, Berlin
-
R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in Mathematics, 470). Springer, Berlin, 1975.
-
(1975)
Lecture Notes in Mathematics
, vol.470
-
-
Bowen, R.1
-
8
-
-
0013501719
-
The ergodic theory of Axiom A flows
-
R. Bowen and D. Ruelle. The ergodic theory of Axiom A flows. Invent. Math. 29 (1975), 181-202.
-
(1975)
Invent. Math
, vol.29
, pp. 181-202
-
-
Bowen, R.1
Ruelle, D.2
-
9
-
-
33645777157
-
Large entropy implies existence of a maximal entropy measure for interval maps
-
J. Buzzi and S. Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete Contin. Dyn. Syst. 14 (2006), 673-688.
-
(2006)
Discrete Contin. Dyn. Syst
, vol.14
, pp. 673-688
-
-
Buzzi, J.1
Ruette, S.2
-
10
-
-
0242382473
-
Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps
-
J. Buzzi and O. Sarig. Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps. Ergod. Th. & Dynam. Sys. 23 (2003), 1383-1400.
-
(2003)
Ergod. Th. & Dynam. Sys
, vol.23
, pp. 1383-1400
-
-
Buzzi, J.1
Sarig, O.2
-
11
-
-
0040942587
-
Markov extensions for multi-dimensional dynamical systems
-
J. Buzzi. Markov extensions for multi-dimensional dynamical systems. Israel J. Math. 112 (1999), 357-380.
-
(1999)
Israel J. Math
, vol.112
, pp. 357-380
-
-
Buzzi, J.1
-
12
-
-
12844274511
-
Subshifts of quasi-finite type
-
J. Buzzi. Subshifts of quasi-finite type. Invent. Math. 159(2) (2005), 369-406.
-
(2005)
Invent. Math
, vol.159
, Issue.2
, pp. 369-406
-
-
Buzzi, J.1
-
13
-
-
0034355847
-
SRB measures for partially hyperbolic systems whose central direction is mostly contracting
-
C. Bonatti and M. Viana. SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Israel J. Math. 115 (2000), 157-193.
-
(2000)
Israel J. Math
, vol.115
, pp. 157-193
-
-
Bonatti, C.1
Viana, M.2
-
15
-
-
0001490241
-
Ergodic theory of equilibrium states for rational maps
-
M. Denker and M. Urbański, Ergodic theory of equilibrium states for rational maps. Nonlinearity 4(1991), 103-134.
-
(1991)
Nonlinearity
, vol.4
, pp. 103-134
-
-
Denker, M.1
Urbański, M.2
-
16
-
-
0040232718
-
The dichotomy of Hausdorff measures and equilibrium states for parabolic rational maps
-
Ergodic Theory and Related Topics, Springer, Berlin
-
M. Denker and M. Urbański. The dichotomy of Hausdorff measures and equilibrium states for parabolic rational maps. Ergodic Theory and Related Topics (Lecture Notes in Mathematics, 1514). Springer, Berlin, 1992, pp. 90-113.
-
(1992)
Lecture Notes in Mathematics
, vol.1514
, pp. 90-113
-
-
Denker, M.1
Urbański, M.2
-
17
-
-
0000819591
-
Ergodic properties of invariant measures for piecewise monotonic transformations
-
F. Hofbauer and G. Keller. Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180 (1982), 119-140.
-
(1982)
Math. Z
, vol.180
, pp. 119-140
-
-
Hofbauer, F.1
Keller, G.2
-
18
-
-
0001656464
-
The ergodic theorem of subadditive stochastic processes
-
J. Kingman. The ergodic theorem of subadditive stochastic processes. J. Roy. Statist. Soc. 30 (1968), 499-510.
-
(1968)
J. Roy. Statist. Soc
, vol.30
, pp. 499-510
-
-
Kingman, J.1
-
19
-
-
33846068172
-
Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes
-
R. Leplaideur and I. Rios. Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes. Nonlinearity 19 (2006), 2667-2694.
-
(2006)
Nonlinearity
, vol.19
, pp. 2667-2694
-
-
Leplaideur, R.1
Rios, I.2
-
21
-
-
26044441263
-
Equilibrium states for certain non-uniformly hyperbolic systems
-
K. Oliveira. Equilibrium states for certain non-uniformly hyperbolic systems. Ergod. Th. & Dynam. Sys. 23 (2003), 1891-1906.
-
(2003)
Ergod. Th. & Dynam. Sys
, vol.23
, pp. 1891-1906
-
-
Oliveira, K.1
-
22
-
-
33745282113
-
Existence and uniqueness of maximizing measures for robust classes of local diffeomorphisms
-
K. Oliveira and M. Viana. Existence and uniqueness of maximizing measures for robust classes of local diffeomorphisms. Discrete Contin. Dyn. Syst. 15 (2006), 225-236.
-
(2006)
Discrete Contin. Dyn. Syst
, vol.15
, pp. 225-236
-
-
Oliveira, K.1
Viana, M.2
-
23
-
-
0038883975
-
Equilibrium states and wieghted uniform distributions of closed orbits
-
Springer, Berlin
-
W. Parry. Equilibrium states and wieghted uniform distributions of closed orbits. Dynamical Systems - Marylan 86/87, Vol. 1342. Springer, Berlin, 1988, pp. 617-625.
-
(1988)
Dynamical Systems - Marylan 86/87
, vol.1342
, pp. 617-625
-
-
Parry, W.1
-
24
-
-
0003406475
-
Contemporary views and applications
-
University of Chicago Press, Chicago, IL
-
Ya. Pesin. Contemporary views and applications. Dimension Theory in Dynamical Systems. University of Chicago Press, Chicago, IL, 1997.
-
(1997)
Dimension Theory in Dynamical Systems
-
-
Pesin, Y.1
-
25
-
-
0002246274
-
On a conjecture due to Smale
-
V. Pliss. On a conjecture due to Smale. Differ. Uravn. 8 (1972), 262-268.
-
(1972)
Differ. Uravn
, vol.8
, pp. 262-268
-
-
Pliss, V.1
-
26
-
-
43449138701
-
Thermodynamics and multifractal analysis of non uniformly hyperbolic rational maps
-
In preparation
-
F. Przytycki, J. Rivera-Letelier and S. Smirnov. Thermodynamics and multifractal analysis of non uniformly hyperbolic rational maps. In preparation.
-
-
-
Przytycki, F.1
Rivera-Letelier, J.2
Smirnov, S.3
-
27
-
-
33645735132
-
Thermodynamical formalism associated with inducing schemes for one-dimensional maps
-
Ya. Pesin and S. Senti. Thermodynamical formalism associated with inducing schemes for one-dimensional maps. Mosc. Math. J. 5 (2005), 669-678; 743-744.
-
(2005)
Mosc. Math. J
, vol.5
-
-
Pesin, Y.1
Senti, S.2
-
28
-
-
0000809231
-
A measure associated with Axiom A attractors
-
D. Ruelle. A measure associated with Axiom A attractors. Amer. I. Math. 98 (1976), 619-654.
-
(1976)
Amer. I. Math
, vol.98
, pp. 619-654
-
-
Ruelle, D.1
-
29
-
-
51249179988
-
An inequality for the entropy of differentiable maps
-
D. Ruelle. An inequality for the entropy of differentiable maps. Bull. Braz. Math. Soc. 9 (1978), 83-87.
-
(1978)
Bull. Braz. Math. Soc
, vol.9
, pp. 83-87
-
-
Ruelle, D.1
-
30
-
-
0141774921
-
The thermodynamical formalism for expanding maps
-
D. Ruelle. The thermodynamical formalism for expanding maps. Comm. Math. Phys. 125 (1989), 239-262.
-
(1989)
Comm. Math. Phys
, vol.125
, pp. 239-262
-
-
Ruelle, D.1
-
31
-
-
0033276174
-
Thermodynamic formalism for countable Markov shifts
-
O. Sarig. Thermodynamic formalism for countable Markov shifts. Ergod. Th. & Dynam. Sys. 19 (1999), 1565-1593.
-
(1999)
Ergod. Th. & Dynam. Sys
, vol.19
, pp. 1565-1593
-
-
Sarig, O.1
-
32
-
-
0035531647
-
Phase transitions for countable Markov shifts
-
O. Sarig. Phase transitions for countable Markov shifts. Comm. Math. Phys. 217 (2001), 555-577.
-
(2001)
Comm. Math. Phys
, vol.217
, pp. 555-577
-
-
Sarig, O.1
-
33
-
-
0037725144
-
Existence of Gibbs measures for countable Markov shifts
-
electronic
-
O. Sarig. Existence of Gibbs measures for countable Markov shifts. Proc. Amer. Math. Soc. 131 (2003), 1751-1758 (electronic).
-
(2003)
Proc. Amer. Math. Soc
, vol.131
, pp. 1751-1758
-
-
Sarig, O.1
-
34
-
-
84956071330
-
Gibbs measures in ergodic theory
-
Ya. Sinai. Gibbs measures in ergodic theory. Russian Math. Surveys 27 (1972), 21-69.
-
(1972)
Russian Math. Surveys
, vol.27
, pp. 21-69
-
-
Sinai, Y.1
-
35
-
-
54649084331
-
-
M. Urbański. Hausdorff measures versus equilibrium states of conformal infinite iterated function systems. Period. Math. Hungar. 37 (1998), 153-205, (International Conference on Dimension and Dynamics (Miskolc, 1998).)
-
M. Urbański. Hausdorff measures versus equilibrium states of conformal infinite iterated function systems. Period. Math. Hungar. 37 (1998), 153-205, (International Conference on Dimension and Dynamics (Miskolc, 1998).)
-
-
-
-
37
-
-
0035531747
-
Strange attractors with one direction of instability
-
Q. Wang and L.-S. Young. Strange attractors with one direction of instability. Comm. Math. Phys. 218 (2001), 1-97.
-
(2001)
Comm. Math. Phys
, vol.218
, pp. 1-97
-
-
Wang, Q.1
Young, L.-S.2
-
38
-
-
0033410563
-
Thermodynamic formalism for certain nonhyperbolic maps
-
M. Yuri. Thermodynamic formalism for certain nonhyperbolic maps. Ergod. Th. & Dynam. Sys. 19(1999), 1365-1378.
-
(1999)
Ergod. Th. & Dynam. Sys
, vol.19
, pp. 1365-1378
-
-
Yuri, M.1
-
39
-
-
0034395014
-
Weak Gibbs measures for certain non-hyperbolic systems
-
M. Yuri. Weak Gibbs measures for certain non-hyperbolic systems. Ergod. Th. & Dynam. Sys. 20 (2000), 1495-1518.
-
(2000)
Ergod. Th. & Dynam. Sys
, vol.20
, pp. 1495-1518
-
-
Yuri, M.1
-
40
-
-
0037634213
-
Thermodynamical formalism for countable to one Markov systems
-
M. Yuri. Thermodynamical formalism for countable to one Markov systems. Trans. Amer. Math. Soc. 335 (2003), 2949-2971.
-
(2003)
Trans. Amer. Math. Soc
, vol.335
, pp. 2949-2971
-
-
Yuri, M.1
|