메뉴 건너뛰기




Volumn 37, Issue 1-3, 1998, Pages 153-205

Hausdorff measures versus equilibrium states of conformal infinite iterated function systems

Author keywords

Almost periodic; Conformal and invariant measures; Density; Iterated function systems

Indexed keywords


EID: 54649084331     PISSN: 00315303     EISSN: 15882829     Source Type: Journal    
DOI: 10.1023/a:1004742822761     Document Type: Article
Times cited : (24)

References (17)
  • 2
    • 0040232718 scopus 로고
    • The dichotomy of Hausdorff measures and equilibrium states for parabolic rational maps
    • Lecture Notes in Mathematics
    • [DU1] M. DENKER and M. URBAŃSKI, The dichotomy of Hausdorff measures and equilibrium states for parabolic rational maps, in Proceedings of the conference on Ergodic Theory in Güstrow (1990), Lecture Notes in Mathematics 1514 (1992), 90-110.
    • (1992) Proceedings of the Conference on Ergodic Theory in Güstrow (1990) , vol.1514 , pp. 90-110
    • Denker, M.1    Urbański, M.2
  • 3
    • 0007453241 scopus 로고
    • Relating Hausdorff measures and harmonic measures on parabolic, Jordan curves
    • [DU2] M. DENKER and M. URRAŃSKI, Relating Hausdorff measures and harmonic measures on parabolic, Jordan curves, Journal für die Reine and Angewandte Mathematik 450 (1994), 181-201.
    • (1994) Journal für Die Reine and Angewandte Mathematik , vol.450 , pp. 181-201
    • Denker, M.1    Urrański, M.2
  • 4
    • 0004186073 scopus 로고
    • New York, Cincinati, Toronto, London, Melbourne, Van Nostrand Reinhold Company
    • [Fr] N. FRIEDMAN, Introduction to Ergodic Theory, New York, Cincinati, Toronto, London, Melbourne, Van Nostrand Reinhold Company, 1970.
    • (1970) Introduction to Ergodic Theory
    • Friedman, N.1
  • 8
    • 0001386063 scopus 로고
    • Théorie regodique pour des classes d'operations non-complement continues
    • [IM] C. IONESCH-TULCEA and G. MARINESCU, Théorie regodique pour des classes d'operations non-complement continues, Ann. Math. 52 (1950), 140-147.
    • (1950) Ann. Math. , vol.52 , pp. 140-147
    • Ionesch-Tulcea, C.1    Marinescu, G.2
  • 9
  • 10
    • 33646913445 scopus 로고    scopus 로고
    • Dimensions and measures in infinite iterated function systems
    • [MU1] D. MAULDIN and M. URBAŃSKI, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. 73 (3) (1996), 105-154.
    • (1996) Proc. London Math. Soc. , vol.73 , Issue.3 , pp. 105-154
    • Mauldin, D.1    Urbański, M.2
  • 12
    • 0001779250 scopus 로고
    • Almost sure invariance principles for partial sums of weakly dependent random variables
    • [PS] W. PHILIPP and W. STOUT, Almost sure invariance principles for partial sums of weakly dependent random variables, Memoirs Amer. Math. Soc. 161 (2) (1975).
    • (1975) Memoirs Amer. Math. Soc. , vol.161 , Issue.2
    • Philipp, W.1    Stout, W.2
  • 14
    • 0002125493 scopus 로고
    • Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps I
    • [PUZ.I] F. PRZYTYCKI, M. URBAŃSKI and A. ZDUNIK, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps I, Ann. of Math. 130 (1989), 1-40.
    • (1989) Ann. of Math. , vol.130 , pp. 1-40
    • Przytycki, F.1    Urbański, M.2    Zdunik, A.3
  • 15
    • 0000191582 scopus 로고
    • Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps II
    • [PUZ,II] F. PRZYTYCKI, M. URBAŃSKI and A. ZDUNIK, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps II, Studia Math. 97 (1991), 189-225.
    • (1991) Studia Math. , vol.97 , pp. 189-225
    • Przytycki, F.1    Urbański, M.2    Zdunik, A.3
  • 16
    • 0001836914 scopus 로고
    • Bounded variation and invariant measures
    • [Ry] M. RYCHLIK, Bounded variation and invariant measures, Studia Math. 76 (1983), 69-80.
    • (1983) Studia Math. , vol.76 , pp. 69-80
    • Rychlik, M.1
  • 17
    • 54749094856 scopus 로고    scopus 로고
    • Theormodynamic formalism for countable Markov shifts
    • to appear
    • [Sa] O. M. SARIG, Theormodynamic formalism For countable Markov shifts, to appear in Ergod. Th. and Dynam. Sys.
    • Ergod. Th. and Dynam. Sys.
    • Sarig, O.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.