-
1
-
-
0005235678
-
A topological invariant arising in the stability analysis of travelling waves
-
ALEXANDER, J., GARDNER, R., JONES, C.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Agnew Math. 410, 167-212 (1990)
-
(1990)
J. Reine Agnew Math.
, vol.410
, pp. 167-212
-
-
Alexander, J.1
Gardner, R.2
Jones, C.3
-
2
-
-
0035538197
-
Alternate Evans functions and viscous shock waves
-
electronic
-
Benzoni-GAVAGE, S., SERRE, D., ZUMBRUN, K.: Alternate Evans functions and viscous shock waves. SIAM J. Math. Anal. 32, 929-962 (electronic) (2001)
-
(2001)
SIAM J. Math. Anal.
, vol.32
, pp. 929-962
-
-
Benzoni-Gavage, S.1
Serre, D.2
Zumbrun, K.3
-
3
-
-
0026142448
-
Theoretical and numerical structure for unstable one-dimensional detonations
-
BURLIOUX, A., MAJDA, A.J., ROYTBURD, V.: Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Math. 51, 303-343 (1991)
-
(1991)
SIAM J. Appl. Math.
, vol.51
, pp. 303-343
-
-
Burlioux, A.1
Majda, A.J.2
Roytburd, V.3
-
4
-
-
37049154758
-
The Ignition of gases by an explosion wave, I:Carbon monoxide and carbon mixtures
-
CAMPBELL, C., WOODHEAD, D.W.: The Ignition of gases by an explosion wave, I:Carbon monoxide and carbon mixtures. J. Chem. Soc. 129, 3010-3021 (1926)
-
(1926)
J. Chem. Soc.
, vol.129
, pp. 3010-3021
-
-
Campbell, C.1
Woodhead, D.W.2
-
5
-
-
37049143174
-
Striated photographic records of explosion waves
-
CAMPBELL, C., WOODHEAD, D.W.: Striated photographic records of explosion waves. J. Chem. Soc. 130, 1572-1578 (1927)
-
(1927)
J. Chem. Soc.
, vol.130
, pp. 1572-1578
-
-
Campbell, C.1
Woodhead, D.W.2
-
9
-
-
0001472248
-
Nerve axon equations, I: Linear approximations
-
EVANS, J.: Nerve axon equations, I: Linear approximations. Indiana Univ. Math. J. 21, 877-855 (1972)
-
(1972)
Indiana Univ. Math. J.
, vol.21
, pp. 877-1855
-
-
Evans, J.1
-
10
-
-
0001472247
-
Nerve axon equations, II: Stability at rest
-
EVANS, J.: Nerve axon equations, II: Stability at rest. Indiana Univ. Math. J. 22, 75-90 (1972)
-
(1972)
Indiana Univ. Math. J.
, vol.22
, pp. 75-90
-
-
Evans, J.1
-
11
-
-
0001472246
-
Nerve axon equations, III: Stability of the nerve impulse
-
EVANS, J.: Nerve axon equations, III: Stability of the nerve impulse. Indiana Univ. Math. J. 22, 577-593 (1972)
-
(1972)
Indiana Univ. Math. J.
, vol.22
, pp. 577-593
-
-
Evans, J.1
-
12
-
-
0016578299
-
Nerve axon equations, IV: The stable and unstable impulse
-
EVANS, J.: Nerve axon equations, IV: The stable and unstable impulse. Indiana Univ. Math. J. 24, 1169-1190 (1975)
-
(1975)
Indiana Univ. Math. J.
, vol.24
, pp. 1169-1190
-
-
Evans, J.1
-
13
-
-
34250627892
-
Geometric singular perturbation theory for ordinary differential equations
-
FENICHEL, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differential Equations 31, 53-98 (1979)
-
(1979)
J. Differential Equations
, vol.31
, pp. 53-98
-
-
Fenichel, N.1
-
15
-
-
0000296180
-
Flow calculations for pulsating one-dimensional detonations
-
FICKETT, W., WOOD, W.W.: Flow calculations for pulsating one-dimensional detonations. Phys. Fluids 9, 903-916 (1966)
-
(1966)
Phys. Fluids
, vol.9
, pp. 903-916
-
-
Fickett, W.1
Wood, W.W.2
-
16
-
-
0343208895
-
Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves
-
Freistühler, H., SZMOLYAN, P.: Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves. SIAM J. Math. Anal. 26, 112-128 (1995)
-
(1995)
SIAM J. Math. Anal.
, vol.26
, pp. 112-128
-
-
Freistühler, H.1
Szmolyan, P.2
-
17
-
-
0040942605
-
The gap lemma and geometric criteria for the instability of viscous shocks
-
GARDNER, R., ZUMBRUN, K.: The gap lemma and geometric criteria for the instability of viscous shocks. Commun Pure Appl. Math. 51, 797-855 (1998)
-
(1998)
Commun Pure Appl. Math.
, vol.51
, pp. 797-855
-
-
Gardner, R.1
Zumbrun, K.2
-
18
-
-
21144479369
-
A geometric singular perturbation analysis of detonation and deflagration waves
-
GASSER, I. SZMOLYAN, P.: A geometric singular perturbation analysis of detonation and deflagration waves. SIAM J. Math. Anal. 24, 968-986 (1993)
-
(1993)
SIAM J. Math. Anal.
, vol.24
, pp. 968-986
-
-
Gasser, I.1
Szmolyan, P.2
-
19
-
-
0000984677
-
Detonation and deflagration waves with multistep reaction schemes
-
GASSER, I. SZMOLYAN, P.: Detonation and deflagration waves with multistep reaction schemes. SIAM J. Appl. Math. 55, 175-191 (1995)
-
(1995)
SIAM J. Appl. Math.
, vol.55
, pp. 175-191
-
-
Gasser, I.1
Szmolyan, P.2
-
20
-
-
0000247179
-
Some problems in the theory of quasilinear equations
-
Gel'fand, I.M.: Some problems in the theory of quasilinear equations. Amer. Math. Soc. Transl. (2) 29, 295-381 (1963)
-
(1963)
Amer. Math. Soc. Transl. (2)
, vol.29
, pp. 295-381
-
-
Gel'fand, I.M.1
-
21
-
-
0000716762
-
The existence and limit behavior of the one-dimensional shock layer
-
GILBARG, D.: The existence and limit behavior of the one-dimensional shock layer. Amer. J. Math. 73, 256-274 (1951)
-
(1951)
Amer. J. Math.
, vol.73
, pp. 256-274
-
-
Gilbarg, D.1
-
22
-
-
58149437354
-
Limit and spine effects in hydrogen-oxygen detonations
-
Academic Press
-
GORDON, W.E., MOORADIAN, A.J., HARPER, S.A.: Limit and spine effects in hydrogen-oxygen detonations. In: Seventh Symposium (International) on Combustion. Academic Press, 1959, pp. 752-759
-
(1959)
Seventh Symposium (International) on Combustion
, pp. 752-759
-
-
Gordon, W.E.1
Mooradian, A.J.2
Harper, S.A.3
-
24
-
-
0012664789
-
Detonative travelling waves for combustions
-
HESAARAKI, M., RAZANI, A.: Detonative travelling waves for combustions. Applicable Anal. 77, 405-418 (2001)
-
(2001)
Applicable Anal.
, vol.77
, pp. 405-418
-
-
Hesaaraki, M.1
Razani, A.2
-
27
-
-
0002348145
-
Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations
-
KAPITULA, T., Sandstede B.: Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations. Phys. D 124, 58-103 (1998)
-
(1998)
Phys. D
, vol.124
, pp. 58-103
-
-
Kapitula, T.1
Sandstede, B.2
-
28
-
-
0037056338
-
Spinning instability of gaseous detonations
-
KASIMOV, A., STEWART, D.S.: Spinning instability of gaseous detonations. J. Fluid Mech. 466, 179-203 (2002)
-
(2002)
J. Fluid Mech.
, vol.466
, pp. 179-203
-
-
Kasimov, A.1
Stewart, D.S.2
-
31
-
-
0025461755
-
Calculation of linear detonation instability: One-dimensional instability of plane detonation
-
LEE, H.I., STEWART, D.S.: Calculation of linear detonation instability: One-dimensional instability of plane detonation. J. Fluid Mech. 216, 103-132 (1990)
-
(1990)
J. Fluid Mech.
, vol.216
, pp. 103-132
-
-
Lee, H.I.1
Stewart, D.S.2
-
32
-
-
0030585881
-
Stability of strong detonation waves to combustion model
-
LI, D., LIU, T.-P., TAN, D.: Stability of strong detonation waves to combustion model. J. Math. Anal. Appl. 201, 516-531 (1996)
-
(1996)
J. Math. Anal. Appl.
, vol.201
, pp. 516-531
-
-
Li, D.1
Liu, T.-P.2
Tan, D.3
-
33
-
-
21144467405
-
On the Riemann problem for a combustion model
-
LI, T.: On the Riemann problem for a combustion model. SIAM J. Math. Anal. 24, 59-75 (1993)
-
(1993)
SIAM J. Math. Anal.
, vol.24
, pp. 59-75
-
-
Li, T.1
-
34
-
-
0000138333
-
On the initiation problem for a combustion model
-
LI, T.: On the initiation problem for a combustion model. J. Differential Equations 112, 351-373 (1994)
-
(1994)
J. Differential Equations
, vol.112
, pp. 351-373
-
-
Li, T.1
-
35
-
-
0000249989
-
Rigorous asymptotic stability of a Chapman-Jouget detonation wave in the limit of small resolved heat release
-
LI, T.: Rigorous asymptotic stability of a Chapman-Jouget detonation wave in the limit of small resolved heat release. Combustion Theory and Modeling 1, 259-270 (1997)
-
(1997)
Combustion Theory and Modeling
, vol.1
, pp. 259-270
-
-
Li, T.1
-
36
-
-
0002840914
-
Stability of strong detonation waves and rates of convergence
-
LI, T. : Stability of strong detonation waves and rates of convergence. Elec. J. Diff. Eqns. 1998, 1-77 (1998)
-
(1998)
Elec. J. Diff. Eqns.
, vol.1998
, pp. 1-77
-
-
Li, T.1
-
38
-
-
0041429241
-
Nonlinear stability of strong detonations for a viscous combustion model
-
LIU, T.-R, YING, L.: Nonlinear stability of strong detonations for a viscous combustion model. SIAM J. Math. Analy. 26, 519-528 (1995)
-
(1995)
SIAM J. Math. Analy.
, vol.26
, pp. 519-528
-
-
Liu, T.-R.1
Ying, L.2
-
39
-
-
0033245368
-
Nonlinear stability of weak detonation waves for a combustion model
-
LIU, T.-P., YU, S.: Nonlinear stability of weak detonation waves for a combustion model. Commun. Math. Phys. 204, 551-586 (1999)
-
(1999)
Commun. Math. Phys.
, vol.204
, pp. 551-586
-
-
Liu, T.-P.1
Yu, S.2
-
41
-
-
4344596895
-
A stability index for detonation waves in majda's model for reacting flow
-
to appear
-
LYNG, G., ZUMBRUN, K.: A stability index for detonation waves in majda's model for reacting flow. Physica D, to appear
-
Physica D
-
-
Lyng, G.1
Zumbrun, K.2
-
42
-
-
0019599446
-
A qualitative model for dynamic combustion
-
MAJDA, A.: A qualitative model for dynamic combustion. SIAM J. Appl. Math. 41, 70-93 (1981)
-
(1981)
SIAM J. Appl. Math.
, vol.41
, pp. 70-93
-
-
Majda, A.1
-
44
-
-
0002124586
-
Stable viscosity matrices for systems of conservation laws
-
MAJDA, A., Pego R.L.: Stable viscosity matrices for systems of conservation laws. J. Differential Equations 56, 229-262 (1985)
-
(1985)
J. Differential Equations
, vol.56
, pp. 229-262
-
-
Majda, A.1
Pego, R.L.2
-
45
-
-
58149438732
-
Vibratory phenomena and instability of self-sustained detonations in gases
-
Academic Press
-
MANSON, N., BROCHET, C., BROSSARD, J., PUJOL, Y.: Vibratory phenomena and instability of self-sustained detonations in gases. In: Ninth Symposium (International) on Combustion, pp. 461-469 Academic Press, 1963
-
(1963)
Ninth Symposium (International) on Combustion
, pp. 461-469
-
-
Manson, N.1
Brochet, C.2
Brossard, J.3
Pujol, Y.4
-
46
-
-
0013040387
-
Pointwise Green's function bounds and stability of relaxation shocks
-
MASCIA, C., ZUMBRUN, K.: Pointwise Green's function bounds and stability of relaxation shocks. Indiana Univ. Math. J. 51, 773-904 (2002)
-
(2002)
Indiana Univ. Math. J.
, vol.51
, pp. 773-904
-
-
Mascia, C.1
Zumbrun, K.2
-
47
-
-
0141957447
-
Pointwise Green function bounds for shock profiles of systems with real viscosity
-
MASCIA, C., ZUMBRUN, K.: Pointwise Green function bounds for shock profiles of systems with real viscosity. Arch. Ration. Mech. Anal. 169, 177-263 (2003)
-
(2003)
Arch. Ration. Mech. Anal.
, vol.169
, pp. 177-263
-
-
Mascia, C.1
Zumbrun, K.2
-
48
-
-
4344705452
-
Stability of viscous shock Profiles for dissipative symmetric hyperbolic-parabolic systems
-
to appear
-
MASCIA, C., ZUMBRUN, K.: Stability of viscous shock Profiles for dissipative symmetric hyperbolic-parabolic systems. Comm. Pure. Appl. Math., to appear
-
Comm. Pure. Appl. Math.
-
-
Mascia, C.1
Zumbrun, K.2
-
49
-
-
35949012093
-
The Riemann problem for fluid flow of real materials
-
MENIKOFF, R., PLOHR, B.J.: The Riemann problem for fluid flow of real materials. Rev. Modern Phys. 61, 75-130 (1999)
-
(1999)
Rev. Modern Phys.
, vol.61
, pp. 75-130
-
-
Menikoff, R.1
Plohr, B.J.2
-
50
-
-
2142857976
-
Fluctuating detonations in gases
-
MUNDY, G., UBBELHODE, F.R.S., WOOD, I.F.: Fluctuating detonations in gases. Proc. Roy. Soc. A 306, 171-178 (1968)
-
(1968)
Proc. Roy. Soc. A
, vol.306
, pp. 171-178
-
-
Mundy, G.1
Ubbelhode, F.R.S.2
Wood, I.F.3
-
51
-
-
0012726272
-
Stability of ZND detonation waves in the majda combustion model
-
ROQUEJOFFRE, J., Vila. J.: Stability of ZND detonation waves in the majda combustion model. Asymptotic Anal 18, 329-348 (1998)
-
(1998)
Asymptotic Anal
, vol.18
, pp. 329-348
-
-
Roquejoffre, J.1
Vila, J.2
-
52
-
-
23044528603
-
La transition vers l'instabilité pour les ondes de choc multi-dimensionnelles
-
electronic
-
SERRE, D.: La transition vers l'instabilité pour les ondes de choc multi-dimensionnelles. Trans. Amer. Math. Soc. 353, 5071-5093 (2001) (electronic)
-
(2001)
Trans. Amer. Math. Soc.
, vol.353
, pp. 5071-5093
-
-
Serre, D.1
-
53
-
-
0142008846
-
Boundary layer stability in real vanishing viscosity limit
-
SERRE, D., ZUMBRUN, K.: Boundary layer stability in real vanishing viscosity limit. Comm. Math. Phys. 202, 547-569 (2001)
-
(2001)
Comm. Math. Phys.
, vol.202
, pp. 547-569
-
-
Serre, D.1
Zumbrun, K.2
-
54
-
-
84972513592
-
Systems of hyperbolic-parabolic type with applications to the discrete Boltzmann equation
-
SHIZUTA, Y., KAWASHIMA, S.: Systems of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14, 435-457 (1984)
-
(1984)
Hokkaido Math. J.
, vol.14
, pp. 435-457
-
-
Shizuta, Y.1
Kawashima, S.2
-
55
-
-
0031153871
-
Low-frequency two-dimensional linear instability of plane detonation
-
SHORT, M., STEWART, D.S.: Low-frequency two-dimensional linear instability of plane detonation. J. Fluid Mech. 340, 249-295 (1997)
-
(1997)
J. Fluid Mech.
, vol.340
, pp. 249-295
-
-
Short, M.1
Stewart, D.S.2
-
56
-
-
0032136260
-
Cellular detonation stability. I. A normal-mode linear analysis
-
SHORT, M., STEWART, D.S.: Cellular detonation stability. I. A normal-mode linear analysis. J. Fluid Mech. 368, 229-262 (1998)
-
(1998)
J. Fluid Mech.
, vol.368
, pp. 229-262
-
-
Short, M.1
Stewart, D.S.2
-
57
-
-
0032641555
-
The multi-dimensional stability of weak-heat-release detonations
-
SHORT, M., STEWART, D.S.: The multi-dimensional stability of weak-heat-release detonations. J. Fluid Mech. 382, 109-135 (1999)
-
(1999)
J. Fluid Mech.
, vol.382
, pp. 109-135
-
-
Short, M.1
Stewart, D.S.2
-
58
-
-
0033451346
-
Dynamics and stability of a weak detonation wave
-
SZEPESSY, A.: Dynamics and stability of a weak detonation wave. Commun. Math. Phys. 202, 547-569 (1999)
-
(1999)
Commun. Math. Phys.
, vol.202
, pp. 547-569
-
-
Szepessy, A.1
-
59
-
-
44949272344
-
Transversal heteroclinic and homoclinic orbits in singular perturbation problems
-
SZMOLYAN, P.: Transversal heteroclinic and homoclinic orbits in singular perturbation problems. J. Differential Equations 92, 252-281 (1991)
-
(1991)
J. Differential Equations
, vol.92
, pp. 252-281
-
-
Szmolyan, P.1
-
60
-
-
0009047220
-
Nonlinear stability of strong detonation waves in gas dynamical combustion
-
TAN, D., TESEI, A.: Nonlinear stability of strong detonation waves in gas dynamical combustion. Nonlinearity 10, 355-376 (1997)
-
(1997)
Nonlinearity
, vol.10
, pp. 355-376
-
-
Tan, D.1
Tesei, A.2
-
61
-
-
84980080185
-
Shock waves in arbitrary fluids
-
WEYL, H.: Shock waves in arbitrary fluids. Commun. Pure Appl. Math. 2, 103-122 (1949)
-
(1949)
Commun. Pure Appl. Math.
, vol.2
, pp. 103-122
-
-
Weyl, H.1
-
64
-
-
0347993642
-
Multidimensional stability of shock waves
-
Indiana University
-
ZUMBRUN, K.: Multidimensional stability of shock waves. Lecture Notes, Indiana University, 2000
-
(2000)
Lecture Notes
-
-
Zumbrun, K.1
-
65
-
-
0001385446
-
Multidimensional stability of planar viscous shock waves
-
Progress in Nonlinear Differential Equations and Applications, Birkhauser
-
ZUMBRUN, K.: Multidimensional stability of planar viscous shock waves. In: Advances in the Theory of Shock Waves, number 47 in Progress in Nonlinear Differential Equations and Applications, pp. 307-516, Birkhauser, 2001
-
(2001)
Advances in the Theory of Shock Waves
, vol.47
, pp. 307-516
-
-
Zumbrun, K.1
-
66
-
-
0009378734
-
Pointwise semigroup methods and the stability of viscous shocks
-
ZUMBRUN, K., HOWARD, P.: Pointwise semigroup methods and the stability of viscous shocks. Indiana Univ. Math. J. 47, 741-871 (1998)
-
(1998)
Indiana Univ. Math. J.
, vol.47
, pp. 741-871
-
-
Zumbrun, K.1
Howard, P.2
-
67
-
-
0001028485
-
Viscous and inviscid stability of multidimensional planar shock fronts
-
ZUMBRUN, K., SERRE, D.: Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ. Math. J. 48, 937-999 (1999)
-
(1999)
Indiana Univ. Math. J.
, vol.48
, pp. 937-999
-
-
Zumbrun, K.1
Serre, D.2
-
69
-
-
4344580679
-
Stability of large-amplitude shock waves of compressible Navier-Stokes Equations
-
Elsevier, to appear
-
ZUMBRUN, K.: Stability of Large-Amplitude shock waves of compressible Navier-Stokes Equations. Handbook Math. Fluid Dyn. IV Elsevier, to appear
-
Handbook Math. Fluid Dyn. IV
-
-
Zumbrun, K.1
|