-
2
-
-
21144479369
-
A geometric singular perturbation analysis of detonation and deflagration waves
-
2. Gasser, I., Szmolyan, P.: A geometric singular perturbation analysis of detonation and deflagration waves, SIAM J. Math. Anal. 24, 968-986 (1993)
-
(1993)
SIAM J. Math. Anal.
, vol.24
, pp. 968-986
-
-
Gasser, I.1
Szmolyan, P.2
-
4
-
-
0032332577
-
Stability of systems of viscous conservation laws
-
4. Kreiss, G. & Kreiss, H.-O.: Stability of systems of viscous conservation laws. Comm. Pure and Appl. Math.51, 1397-1424 (1998)
-
(1998)
Comm. Pure and Appl. Math.
, vol.51
, pp. 1397-1424
-
-
Kreiss, G.1
Kreiss, H.-O.2
-
5
-
-
0002840914
-
Stability of strong detonation waves and rates of convergence
-
5. Li, T.: Stability of strong detonation waves and rates of convergence. Electronic J. of Differential Equations 1-17 (1998)
-
(1998)
Electronic J. of Differential Equations
, pp. 1-17
-
-
Li, T.1
-
6
-
-
0000249989
-
Rigorous asymptotic staility of a Chapman-Jouguet detonation wave in the limit of small resolved heat release
-
6. Li, T.: Rigorous asymptotic staility of a Chapman-Jouguet detonation wave in the limit of small resolved heat release. Combustion Theory Modeling 1, 259-270 (1997)
-
(1997)
Combustion Theory Modeling
, vol.1
, pp. 259-270
-
-
Li, T.1
-
7
-
-
0031531481
-
Pointwise convergence to shock waves for viscous conservation laws
-
7. Liu, T.-P.: Pointwise Convergence to Shock Waves for Viscous Conservation Laws. Comm. Pure and Appl. Math. vol. L No 11, 1113-1182 (1997)
-
(1997)
Comm. Pure and Appl. Math.
, vol.L
, Issue.11
, pp. 1113-1182
-
-
Liu, T.-P.1
-
8
-
-
0009005291
-
Zero dissipation and stability of shocks
-
8. Liu, T.-P.: Zero dissipation and stability of shocks. Method and Applications of Analysis 5, 81-94 (1998)
-
(1998)
Method and Applications of Analysis
, vol.5
, pp. 81-94
-
-
Liu, T.-P.1
-
9
-
-
0041429241
-
Nonlinear stability of strong detonation for a viscous combustion model
-
9. Liu, T.-P. & Ying, L.-A.: Nonlinear stability of strong detonation for a viscous combustion model. SIAM J. Math. Anal. 26, 519-528 (1995)
-
(1995)
SIAM J. Math. Anal.
, vol.26
, pp. 519-528
-
-
Liu, T.-P.1
Ying, L.-A.2
-
10
-
-
0031505790
-
Propagation of a stationary shock layer in the presence of a boundary
-
10. Liu, T.-P. & Yu, S.-H.: Propagation of a Stationary Shock Layer in the Presence of a Boundary. Arch. Rat. Mech. Anal. 139, 57-82 (1997)
-
(1997)
Arch. Rat. Mech. Anal.
, vol.139
, pp. 57-82
-
-
Liu, T.-P.1
Yu, S.-H.2
-
11
-
-
0033437456
-
Continuum shock profiles for discrete conservation laws, I. Construction
-
To appear
-
11. Liu, T.-P. & Yu, S.-H.: Continuum Shock Profiles for Discrete Conservation Laws, I. Construction. To appear in Commun. Pure Appl. Math. (1999)
-
(1999)
Commun. Pure Appl. Math.
-
-
Liu, T.-P.1
Yu, S.-H.2
-
12
-
-
0009051862
-
Continuum shock profiles for discrete conservation laws, II: Stability
-
Submitted
-
12. Liu, T.-P. & Yu, S.-H.: Continuum Shock Profiles for Discrete Conservation Laws, II: Stability. Submitted to Commun. Pure Appl. Math. (1998)
-
(1998)
Commun. Pure Appl. Math.
-
-
Liu, T.-P.1
Yu, S.-H.2
-
13
-
-
0009002043
-
A qualitative model for dynamics combustion
-
13. Majda, A.: A qualitative model for dynamics combustion. SIAM J. Appl. Math. 37, 686-699 (1979)
-
(1979)
SIAM J. Appl. Math.
, vol.37
, pp. 686-699
-
-
Majda, A.1
-
14
-
-
0031481112
-
The asymptotic behavior of the hyperbolic conservation laws with relaxation on the quarter plane
-
14. Nishibata, S. & Yu, S.-H.: The Asymptotic Behavior of the Hyperbolic Conservation Laws with Relaxation on the Quarter Plane. SIAM J. Appl. Math. 28, 304-321 (1997)
-
(1997)
SIAM J. Appl. Math.
, vol.28
, pp. 304-321
-
-
Nishibata, S.1
Yu, S.-H.2
-
15
-
-
0020830109
-
Weakly nonlinear detonation waves
-
15. Rosales, R. & Majda, A.: Weakly nonlinear detonation waves. SIAM J. Appl. Math. 43, 1086-1118 (1983)
-
(1983)
SIAM J. Appl. Math.
, vol.43
, pp. 1086-1118
-
-
Rosales, R.1
Majda, A.2
-
17
-
-
85044493571
-
Zero dissipation limit to solutions with shocks for systems of hyperbolic conservation laws
-
To appear
-
17. Yu, S.-H.: Zero Dissipation Limit to Solutions with Shocks for Systems of Hyperbolic Conservation Laws. To appear in Arch. Rat. Mech. Anal.
-
Arch. Rat. Mech. Anal.
-
-
Yu, S.-H.1
|