메뉴 건너뛰기




Volumn 45, Issue 3, 2008, Pages 496-502

Semi-supervised robust on-line clustering algorithm

Author keywords

Kernel method; Machine learning; On line clustering; Robust; Semi supervised learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); DATA MINING; LEARNING SYSTEMS; ONLINE SYSTEMS; ROBUST CONTROL; SUPERVISED LEARNING;

EID: 43249098846     PISSN: 10001239     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (5)

References (19)
  • 1
    • 0348030381 scopus 로고
    • Concept extraction: A data-mining technique
    • V Faber, J G Hochberg, P M Kelly, et al. Concept Extraction: A Data-Mining Technique [J]. Los Alamos Science, 1994, (22): 122-149
    • (1994) Los Alamos Science , Issue.22 , pp. 122-149
    • Faber, V.1    Hochberg, J.G.2    Kelly, P.M.3
  • 3
    • 9444294778 scopus 로고    scopus 로고
    • From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering
    • Sydney, Australia
    • D Klein, S D Kamvar, C Manning. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering [C]. The 9th Int'l Conf on Machine Learning, Sydney, Australia, 2002
    • (2002) The 9th Int'l Conf on Machine Learning
    • Klein, D.1    Kamvar, S.D.2    Manning, C.3
  • 4
    • 2442614802 scopus 로고    scopus 로고
    • Fuzzy clustering with supervision
    • W Pedrycz, G Vukovich. Fuzzy clustering with supervision [J]. Pattern Recognition, 2004, 37 (7): 1339-1349
    • (2004) Pattern Recognition , vol.37 , Issue.7 , pp. 1339-1349
    • Pedrycz, W.1    Vukovich, G.2
  • 7
    • 0001931761 scopus 로고
    • Algorithms of fuzzy clustering with partial supervision
    • W Pedrycz. Algorithms of fuzzy clustering with partial supervision [J]. Pattern Recognition Letters, 1985, 3 (1): 13-20
    • (1985) Pattern Recognition Letters , vol.3 , Issue.1 , pp. 13-20
    • Pedrycz, W.1
  • 8
    • 21144442378 scopus 로고    scopus 로고
    • A Constrained partition model and K-Means algorithm
    • in Chinese
    • Z F He, F L Xiong. A Constrained partition model and K-Means algorithm [J]. Journal of Software, 2005, 16 (5): 799-809 (in Chinese)
    • (2005) Journal of Software , vol.16 , Issue.5 , pp. 799-809
    • He, Z.F.1    Xiong, F.L.2
  • 9
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • University of Wisconsin-Madison, Tech Rep: 1530
    • X J Zhu. Semi-supervised learning literature survey [R]. University of Wisconsin-Madison, Tech Rep: 1530, 2006
    • (2006)
    • Zhu, X.J.1
  • 11
    • 0030150519 scopus 로고    scopus 로고
    • Partially supervised clustering for image segmentation
    • A M Bensaid, L O Hall. J C Bezdek, et al. Partially supervised clustering for image segmentation [J]. Pattern Recognition, 1996, 29 (5): 859-871
    • (1996) Pattern Recognition , vol.29 , Issue.5 , pp. 859-871
    • Bensaid, A.M.1    Hall, L.O.2    Bezdek, J.C.3
  • 12
    • 2542567719 scopus 로고    scopus 로고
    • Semi-supervised clustering by seeding
    • Sydney
    • S Basu, Arindam Banerjee, Raymond Mooney. Semi-supervised Clustering by Seeding [C]. ICML2002, Sydney, 2002
    • (2002) ICML2002
    • Basu, S.1    Banerjee, A.2    Mooney, R.3
  • 15
    • 12844281842 scopus 로고    scopus 로고
    • Improving the robustness of 'online agglomerative clustering method' based on kernel-induce distance measures
    • D Q Zhang, S C Chen, K R Tan. Improving the robustness of 'online agglomerative clustering method' based on kernel-induce distance measures [J]. Neural Processing Letters, 2005, 21 (1): 45-51
    • (2005) Neural Processing Letters , vol.21 , Issue.1 , pp. 45-51
    • Zhang, D.Q.1    Chen, S.C.2    Tan, K.R.3
  • 16
    • 0033556908 scopus 로고    scopus 로고
    • An on-line agglomerative clustering method for nonstationary data
    • I D Guedalia, M London, M Werman. An on-line agglomerative clustering method for nonstationary data [J]. Neural Computation, 1999, 11 (2): 521-540
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 521-540
    • Guedalia, I.D.1    London, M.2    Werman, M.3
  • 17
    • 0036825879 scopus 로고    scopus 로고
    • The effect of finite sample size on online K-means
    • S Bermejo, J Cahestany. The effect of finite sample size on online K-means [J]. Neural Computation. 2002, 48 (4): 511-539
    • (2002) Neural Computation , vol.48 , Issue.4 , pp. 511-539
    • Bermejo, S.1    Cahestany, J.2
  • 18
    • 0028607656 scopus 로고
    • A new competitive learning approach based on an epuidistoration principle for designing optimal vector quantizesr
    • N Ueda, R Nakano. A new competitive learning approach based on an epuidistoration principle for designing optimal vector quantizesr [J]. Neural Networks, 1994, 7 (8): 1211-1227
    • (1994) Neural Networks , vol.7 , Issue.8 , pp. 1211-1227
    • Ueda, N.1    Nakano, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.