-
1
-
-
0348030381
-
Concept extraction: A data-mining technique
-
V Faber, J G Hochberg, P M Kelly, et al. Concept Extraction: A Data-Mining Technique [J]. Los Alamos Science, 1994, (22): 122-149
-
(1994)
Los Alamos Science
, Issue.22
, pp. 122-149
-
-
Faber, V.1
Hochberg, J.G.2
Kelly, P.M.3
-
3
-
-
9444294778
-
From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering
-
Sydney, Australia
-
D Klein, S D Kamvar, C Manning. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering [C]. The 9th Int'l Conf on Machine Learning, Sydney, Australia, 2002
-
(2002)
The 9th Int'l Conf on Machine Learning
-
-
Klein, D.1
Kamvar, S.D.2
Manning, C.3
-
4
-
-
2442614802
-
Fuzzy clustering with supervision
-
W Pedrycz, G Vukovich. Fuzzy clustering with supervision [J]. Pattern Recognition, 2004, 37 (7): 1339-1349
-
(2004)
Pattern Recognition
, vol.37
, Issue.7
, pp. 1339-1349
-
-
Pedrycz, W.1
Vukovich, G.2
-
5
-
-
0031257480
-
Fuzzy clustering with partial supervision
-
W Pedrycz, J Waletzky. Fuzzy clustering with partial supervision [J]. IEEE Trans on Systems, Man, and Cybernetics-Part B, 1997, 27 (5): 787-795
-
(1997)
IEEE Trans on Systems, Man, and Cybernetics-Part B
, vol.27
, Issue.5
, pp. 787-795
-
-
Pedrycz, W.1
Waletzky, J.2
-
7
-
-
0001931761
-
Algorithms of fuzzy clustering with partial supervision
-
W Pedrycz. Algorithms of fuzzy clustering with partial supervision [J]. Pattern Recognition Letters, 1985, 3 (1): 13-20
-
(1985)
Pattern Recognition Letters
, vol.3
, Issue.1
, pp. 13-20
-
-
Pedrycz, W.1
-
8
-
-
21144442378
-
A Constrained partition model and K-Means algorithm
-
in Chinese
-
Z F He, F L Xiong. A Constrained partition model and K-Means algorithm [J]. Journal of Software, 2005, 16 (5): 799-809 (in Chinese)
-
(2005)
Journal of Software
, vol.16
, Issue.5
, pp. 799-809
-
-
He, Z.F.1
Xiong, F.L.2
-
9
-
-
33745456231
-
Semi-supervised learning literature survey
-
University of Wisconsin-Madison, Tech Rep: 1530
-
X J Zhu. Semi-supervised learning literature survey [R]. University of Wisconsin-Madison, Tech Rep: 1530, 2006
-
(2006)
-
-
Zhu, X.J.1
-
11
-
-
0030150519
-
Partially supervised clustering for image segmentation
-
A M Bensaid, L O Hall. J C Bezdek, et al. Partially supervised clustering for image segmentation [J]. Pattern Recognition, 1996, 29 (5): 859-871
-
(1996)
Pattern Recognition
, vol.29
, Issue.5
, pp. 859-871
-
-
Bensaid, A.M.1
Hall, L.O.2
Bezdek, J.C.3
-
12
-
-
2542567719
-
Semi-supervised clustering by seeding
-
Sydney
-
S Basu, Arindam Banerjee, Raymond Mooney. Semi-supervised Clustering by Seeding [C]. ICML2002, Sydney, 2002
-
(2002)
ICML2002
-
-
Basu, S.1
Banerjee, A.2
Mooney, R.3
-
14
-
-
84879571292
-
Distance metric learning, with application to clustering with side-information
-
E P Xing, A Y Ng, M I Jordan, et al. Distance metric learning, with application to clustering with side-information [J]. Advances in Neural Information Processing Systems, 2003, 15: 505-512
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 505-512
-
-
Xing, E.P.1
Ng, A.Y.2
Jordan, M.I.3
-
15
-
-
12844281842
-
Improving the robustness of 'online agglomerative clustering method' based on kernel-induce distance measures
-
D Q Zhang, S C Chen, K R Tan. Improving the robustness of 'online agglomerative clustering method' based on kernel-induce distance measures [J]. Neural Processing Letters, 2005, 21 (1): 45-51
-
(2005)
Neural Processing Letters
, vol.21
, Issue.1
, pp. 45-51
-
-
Zhang, D.Q.1
Chen, S.C.2
Tan, K.R.3
-
16
-
-
0033556908
-
An on-line agglomerative clustering method for nonstationary data
-
I D Guedalia, M London, M Werman. An on-line agglomerative clustering method for nonstationary data [J]. Neural Computation, 1999, 11 (2): 521-540
-
(1999)
Neural Computation
, vol.11
, Issue.2
, pp. 521-540
-
-
Guedalia, I.D.1
London, M.2
Werman, M.3
-
17
-
-
0036825879
-
The effect of finite sample size on online K-means
-
S Bermejo, J Cahestany. The effect of finite sample size on online K-means [J]. Neural Computation. 2002, 48 (4): 511-539
-
(2002)
Neural Computation
, vol.48
, Issue.4
, pp. 511-539
-
-
Bermejo, S.1
Cahestany, J.2
-
18
-
-
0028607656
-
A new competitive learning approach based on an epuidistoration principle for designing optimal vector quantizesr
-
N Ueda, R Nakano. A new competitive learning approach based on an epuidistoration principle for designing optimal vector quantizesr [J]. Neural Networks, 1994, 7 (8): 1211-1227
-
(1994)
Neural Networks
, vol.7
, Issue.8
, pp. 1211-1227
-
-
Ueda, N.1
Nakano, R.2
|