메뉴 건너뛰기




Volumn 6973, Issue , 2008, Pages

Improvement in minority attack detection with skewness in network traffic

Author keywords

Anomaly based IDS; Data Dependent Fusion (DD Fusion); Detection performance; F score; False Negative (FN); False Positive (FP); Intrusion Detection Systems (IDS); Neural network; Precision; Recall; Sensor fusion

Indexed keywords

DATA FUSION; NETWORK SECURITY; NEURAL NETWORKS; PRECISION ENGINEERING; TELECOMMUNICATION TRAFFIC;

EID: 43249098440     PISSN: 0277786X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.785623     Document Type: Conference Paper
Times cited : (22)

References (38)
  • 6
    • 0034825778 scopus 로고    scopus 로고
    • Mining needles in a haystack: Classifying rare classes via two-phase rule induction
    • May
    • M. V. Joshi, R. C. Agarwal, V. Kumar, Mining needles in a haystack: classifying rare classes via two-phase rule induction, ACM SIGMOD May 2001
    • (2001) ACM SIGMOD
    • Joshi, M.V.1    Agarwal, R.C.2    Kumar, V.3
  • 8
    • 43249101591 scopus 로고    scopus 로고
    • J. R. Quinlan, C4.5: Programs for machine learning, Morgan Kaufmann, 1993
    • J. R. Quinlan, C4.5: Programs for machine learning, Morgan Kaufmann, 1993
  • 9
    • 43249099281 scopus 로고    scopus 로고
    • K. Kendall, A database of computer attacks for the evaluation of intrusion detection systems, Thesis, MIT, 1999
    • K. Kendall, A database of computer attacks for the evaluation of intrusion detection systems, Thesis, MIT, 1999
  • 11
    • 84928016636 scopus 로고    scopus 로고
    • The base-rate fallacy and the difficulty of Intrusion Detection
    • Aug
    • S. Axelsson, The base-rate fallacy and the difficulty of Intrusion Detection, ACM Transactions on Information and System Security, vol.3, No.3, Aug 2000
    • (2000) ACM Transactions on Information and System Security , vol.3 , Issue.3
    • Axelsson, S.1
  • 12
    • 43249115581 scopus 로고    scopus 로고
    • Accuracy Paradox, http://en.wikipedia.org/wiki/Accuracy_paradox
    • Accuracy Paradox
  • 14
    • 43249090822 scopus 로고    scopus 로고
    • R. Agarwal and M. V. Joshi, PN rule: A new framework for learning classifier models in data mining (a case-study in network intrusion detection), Technical Report RC 21719, IBM Research report, Computer Science/Mathematics, April 2000
    • R. Agarwal and M. V. Joshi, PN rule: A new framework for learning classifier models in data mining (a case-study in network intrusion detection), Technical Report RC 21719, IBM Research report, Computer Science/Mathematics, April 2000
  • 16
    • 17844410852 scopus 로고    scopus 로고
    • Learning from imbalanced data sets
    • Technical Report WS-00-05, AAAI Press, Menlo Park, CA
    • R. C. Holte, N. Japkowicz, C. X. Ling, Learning from imbalanced data sets, Technical Report WS-00-05, AAAI Press, Menlo Park, CA, 2000
    • (2000)
    • Holte, R.C.1    Japkowicz, N.2    Ling, C.X.3
  • 17
    • 0038793434 scopus 로고    scopus 로고
    • Toward cost-sensitive modeling for intrusion detection and response
    • Technical report CUCS-002-00, Computer Science, Columbia University
    • W. Lee, W. Fan, M. Miller, S. Stolfo, E. Zadok, Toward cost-sensitive modeling for intrusion detection and response, Technical report CUCS-002-00, Computer Science, Columbia University, 2000
    • (2000)
    • Lee, W.1    Fan, W.2    Miller, M.3    Stolfo, S.4    Zadok, E.5
  • 18
    • 0038428854 scopus 로고    scopus 로고
    • Results of the KDD'99 classifier learning
    • Jan
    • C. Elkan, Results of the KDD'99 classifier learning, SIGKDD Explorations, Vol. 1, Issue 2, pp. 63-64, Jan 2000
    • (2000) SIGKDD Explorations , vol.1 , Issue.2 , pp. 63-64
    • Elkan, C.1
  • 19
    • 35949000533 scopus 로고    scopus 로고
    • Selection of Intrusion Detection Threshold Bounds for effective Sensor Fusion
    • Orlando, Florida, April
    • C. Thomas, N. Balakrishnan, Selection of Intrusion Detection Threshold Bounds for effective Sensor Fusion, Proceedings of SPIE Defense and Security Conference, 6570-5, Orlando, Florida, April 2007
    • (2007) Proceedings of SPIE Defense and Security Conference , pp. 6570-6575
    • Thomas, C.1    Balakrishnan, N.2
  • 21
    • 33646037321 scopus 로고    scopus 로고
    • R. Perdisci, G.Giacinto, F. Roli, Alarm clustering for intrusion detection systems in computer networks, Engg. applications of Artificial Intelligence, Elsevier publications, March 2006
    • R. Perdisci, G.Giacinto, F. Roli, Alarm clustering for intrusion detection systems in computer networks, Engg. applications of Artificial Intelligence, Elsevier publications, March 2006
  • 25
    • 0012061165 scopus 로고    scopus 로고
    • Multisensor Data Fusion for Next Generation Distributed Intrusion Detection Systems
    • T. Bass, Multisensor Data Fusion for Next Generation Distributed Intrusion Detection Systems, IRIS National Symposium, 1999
    • (1999) IRIS National Symposium
    • Bass, T.1
  • 26
    • 0038330235 scopus 로고    scopus 로고
    • Fusion of multiple Classifiers for Intrusion Detection in Computer Networks
    • G. Giacinto, F. Roli, L. Didaci, Fusion of multiple Classifiers for Intrusion Detection in Computer Networks, Pattern Recognition Letters, 24, pp. 1795-1803, 2003
    • (2003) Pattern Recognition Letters , vol.24 , pp. 1795-1803
    • Giacinto, G.1    Roli, F.2    Didaci, L.3
  • 33
    • 43249099768 scopus 로고    scopus 로고
    • www.snort.org/docs/snort_htmanuals/htmanual_260
  • 35
    • 85019691440 scopus 로고    scopus 로고
    • Testing Intrusion Detection Systems: A critique of the 1998 and 1999 DARPA IDS evaluations as performed by Lincoln Laboratory
    • Nov
    • J. McHugh, Testing Intrusion Detection Systems: A critique of the 1998 and 1999 DARPA IDS evaluations as performed by Lincoln Laboratory, ACM Transactions on information and system security, vol 3, No.4, Nov 2000
    • (2000) ACM Transactions on information and system security , vol.3 , Issue.4
    • McHugh, J.1
  • 36
    • 43249124648 scopus 로고    scopus 로고
    • M. V. Mahoney, P. K. Chan, An analysis of the 1999 DARPA/ Lincoln Laboratory evaluation data for network anomaly detection, Technical Report CS-2003-02
    • M. V. Mahoney, P. K. Chan, An analysis of the 1999 DARPA/ Lincoln Laboratory evaluation data for network anomaly detection, Technical Report CS-2003-02
  • 38
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • M. Kubat, R. C. Holte, S. Matwin, Machine learning for the detection of oil spills in satellite radar images, Machine Learning, 30: 195-215, 1998
    • (1998) Machine Learning , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.C.2    Matwin, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.