-
1
-
-
38249035274
-
The monotonicity of the period function for planar Hamiltonian vector field
-
Chicone C 1987 The monotonicity of the period function for planar Hamiltonian vector field J. Diff. Eqns 69 310-21
-
(1987)
J. Diff. Eqns
, vol.69
, Issue.3
, pp. 310-321
-
-
Chicone, C.1
-
2
-
-
84966216689
-
A quadratic system with a nonmonotonic period function
-
Chicone C and Dumortier F 1988 A quadratic system with a nonmonotonic period function Proc. Am. Math. Soc. 102 706-10
-
(1988)
Proc. Am. Math. Soc.
, vol.102
, Issue.3
, pp. 706-710
-
-
Chicone, C.1
Dumortier, F.2
-
3
-
-
0011628950
-
Finiteness for critical periods of plane analytic vector fields
-
Chicone C and Dumortier F 1993 Finiteness for critical periods of plane analytic vector fields Nonlin. Anal. 20 315-35
-
(1993)
Nonlin. Anal.
, vol.20
, Issue.4
, pp. 315-335
-
-
Chicone, C.1
Dumortier, F.2
-
4
-
-
0001792989
-
On the number of critical points of period
-
Chow S-N and Sanders J A 1986 On the number of critical points of period J. Diff. Eqns 64 51-66
-
(1986)
J. Diff. Eqns
, vol.64
, Issue.1
, pp. 51-66
-
-
Chow, S.-N.1
Sanders, J.A.2
-
5
-
-
0002866305
-
On the monotonicity of the period function of some second order equation
-
Chow S N and Wang D 1986 On the monotonicity of the period function of some second order equation Casopis Pest. Mat. 111 14-25
-
(1986)
Casopis Pest. Mat.
, vol.111
, pp. 14-25
-
-
Chow, S.N.1
Wang, D.2
-
6
-
-
0034693569
-
Period function for a class of Hamiltonian systems
-
Cima A, Gasull A and Mãosas F 2000 Period function for a class of Hamiltonian systems J. Diff. Eqns 168 180-99
-
(2000)
J. Diff. Eqns
, vol.168
, Issue.1
, pp. 180-199
-
-
Cima, A.1
Gasull, A.2
Mãosas, F.3
-
7
-
-
84972541905
-
The period function of a Hamiltonian quadratic system
-
Coppel W A and Gavrilov L 1993 The period function of a Hamiltonian quadratic system Diff. Int. Eqns 6 1337-65
-
(1993)
Diff. Int. Eqns
, vol.6
, pp. 1337-1365
-
-
Coppel, W.A.1
Gavrilov, L.2
-
9
-
-
38249004764
-
Remark on the number of critical points of the period
-
Gavrilov L 1993 Remark on the number of critical points of the period J. Diff. Eqns 101 58-65
-
(1993)
J. Diff. Eqns
, vol.101
, Issue.1
, pp. 58-65
-
-
Gavrilov, L.1
-
10
-
-
1342267576
-
Complete hyperelliptic integrals of the first kind and their non-oscillation
-
Gavrilov L and Iliev I D 2003 Complete hyperelliptic integrals of the first kind and their non-oscillation Trans. Am. Math. Soc. 356 1185-207
-
(2003)
Trans. Am. Math. Soc.
, vol.356
, Issue.3
, pp. 1185-1207
-
-
Gavrilov, L.1
Iliev, I.D.2
-
11
-
-
0000857278
-
A remark on the period of the periodic solution in the Lotka-Volterra system
-
Hsu S-B 1983 A remark on the period of the periodic solution in the Lotka-Volterra system J. Math. Anal. Appl. 95 428-36
-
(1983)
J. Math. Anal. Appl.
, vol.95
, Issue.2
, pp. 428-436
-
-
Hsu, S.-B.1
-
12
-
-
43049123586
-
The strong monotonicity of period function of Hamiltonian quadratic systems
-
Liu Y 1986 The strong monotonicity of period function of Hamiltonian quadratic systems J. Shanghai Inst. Educ. 4 10-12 (in Chinese)
-
(1986)
J. Shanghai Inst. Educ.
, vol.4
, pp. 10-12
-
-
Liu, Y.1
-
13
-
-
33645979632
-
The period function of reversible quadratic centers
-
Mardesic P, Marín D and Villadelprat J 2006 The period function of reversible quadratic centers J. Diff. Eqns 224 120-71
-
(2006)
J. Diff. Eqns
, vol.224
, Issue.1
, pp. 120-171
-
-
Mardesic, P.1
Marín, D.2
Villadelprat, J.3
-
14
-
-
84920547916
-
The periods of the Volterra-Lotka system
-
Rothe F 1985 The periods of the Volterra-Lotka system J. Reine Angew. Math. 355 129-38
-
(1985)
J. Reine Angew. Math.
, vol.355
, pp. 129-138
-
-
Rothe, F.1
-
15
-
-
0002499881
-
A class of Hamiltonian systems with increasing periods
-
Schaaf R 1985 A class of Hamiltonian systems with increasing periods J. Reine Angew. Math. 363 96-109
-
(1985)
J. Reine Angew. Math.
, vol.363
, pp. 96-109
-
-
Schaaf, R.1
-
16
-
-
42649144254
-
On the reversible quadratic centers with monotone period function
-
Villadelprat J 2007 On the reversible quadratic centers with monotone period function Proc. Am. Math. Soc. 135 2555-65
-
(2007)
Proc. Am. Math. Soc.
, vol.135
, Issue.8
, pp. 2555-2565
-
-
Villadelprat, J.1
-
17
-
-
0022661610
-
The period in the Lotka-Volterra system is monotonic
-
Waldvogel J 1986 The period in the Lotka-Volterra system is monotonic J. Math. Anal. Appl. 114 178-84
-
(1986)
J. Math. Anal. Appl.
, vol.114
, Issue.1
, pp. 178-184
-
-
Waldvogel, J.1
-
18
-
-
38249037671
-
2(x - α)(x - 1) = 0 (0 ≤ α < 1)
-
2(x - α)(x - 1) = 0 (0 ≤ α < 1) Nonlinear Anal. (TMA) 11 1029-50
-
(1987)
Nonlinear Anal. (TMA)
, vol.11
, Issue.9
, pp. 1029-1050
-
-
Wang, D.1
|