메뉴 건너뛰기




Volumn 21, Issue 3, 2008, Pages 465-483

The period function of hyperelliptic Hamiltonians of degree 5 with real critical points

Author keywords

[No Author keywords available]

Indexed keywords


EID: 43049125129     PISSN: 09517715     EISSN: 13616544     Source Type: Journal    
DOI: 10.1088/0951-7715/21/3/006     Document Type: Article
Times cited : (22)

References (19)
  • 1
    • 38249035274 scopus 로고
    • The monotonicity of the period function for planar Hamiltonian vector field
    • Chicone C 1987 The monotonicity of the period function for planar Hamiltonian vector field J. Diff. Eqns 69 310-21
    • (1987) J. Diff. Eqns , vol.69 , Issue.3 , pp. 310-321
    • Chicone, C.1
  • 2
    • 84966216689 scopus 로고
    • A quadratic system with a nonmonotonic period function
    • Chicone C and Dumortier F 1988 A quadratic system with a nonmonotonic period function Proc. Am. Math. Soc. 102 706-10
    • (1988) Proc. Am. Math. Soc. , vol.102 , Issue.3 , pp. 706-710
    • Chicone, C.1    Dumortier, F.2
  • 3
    • 0011628950 scopus 로고
    • Finiteness for critical periods of plane analytic vector fields
    • Chicone C and Dumortier F 1993 Finiteness for critical periods of plane analytic vector fields Nonlin. Anal. 20 315-35
    • (1993) Nonlin. Anal. , vol.20 , Issue.4 , pp. 315-335
    • Chicone, C.1    Dumortier, F.2
  • 4
    • 0001792989 scopus 로고
    • On the number of critical points of period
    • Chow S-N and Sanders J A 1986 On the number of critical points of period J. Diff. Eqns 64 51-66
    • (1986) J. Diff. Eqns , vol.64 , Issue.1 , pp. 51-66
    • Chow, S.-N.1    Sanders, J.A.2
  • 5
    • 0002866305 scopus 로고
    • On the monotonicity of the period function of some second order equation
    • Chow S N and Wang D 1986 On the monotonicity of the period function of some second order equation Casopis Pest. Mat. 111 14-25
    • (1986) Casopis Pest. Mat. , vol.111 , pp. 14-25
    • Chow, S.N.1    Wang, D.2
  • 6
    • 0034693569 scopus 로고    scopus 로고
    • Period function for a class of Hamiltonian systems
    • Cima A, Gasull A and Mãosas F 2000 Period function for a class of Hamiltonian systems J. Diff. Eqns 168 180-99
    • (2000) J. Diff. Eqns , vol.168 , Issue.1 , pp. 180-199
    • Cima, A.1    Gasull, A.2    Mãosas, F.3
  • 7
    • 84972541905 scopus 로고
    • The period function of a Hamiltonian quadratic system
    • Coppel W A and Gavrilov L 1993 The period function of a Hamiltonian quadratic system Diff. Int. Eqns 6 1337-65
    • (1993) Diff. Int. Eqns , vol.6 , pp. 1337-1365
    • Coppel, W.A.1    Gavrilov, L.2
  • 8
  • 9
    • 38249004764 scopus 로고
    • Remark on the number of critical points of the period
    • Gavrilov L 1993 Remark on the number of critical points of the period J. Diff. Eqns 101 58-65
    • (1993) J. Diff. Eqns , vol.101 , Issue.1 , pp. 58-65
    • Gavrilov, L.1
  • 10
    • 1342267576 scopus 로고    scopus 로고
    • Complete hyperelliptic integrals of the first kind and their non-oscillation
    • Gavrilov L and Iliev I D 2003 Complete hyperelliptic integrals of the first kind and their non-oscillation Trans. Am. Math. Soc. 356 1185-207
    • (2003) Trans. Am. Math. Soc. , vol.356 , Issue.3 , pp. 1185-1207
    • Gavrilov, L.1    Iliev, I.D.2
  • 11
    • 0000857278 scopus 로고
    • A remark on the period of the periodic solution in the Lotka-Volterra system
    • Hsu S-B 1983 A remark on the period of the periodic solution in the Lotka-Volterra system J. Math. Anal. Appl. 95 428-36
    • (1983) J. Math. Anal. Appl. , vol.95 , Issue.2 , pp. 428-436
    • Hsu, S.-B.1
  • 12
    • 43049123586 scopus 로고
    • The strong monotonicity of period function of Hamiltonian quadratic systems
    • Liu Y 1986 The strong monotonicity of period function of Hamiltonian quadratic systems J. Shanghai Inst. Educ. 4 10-12 (in Chinese)
    • (1986) J. Shanghai Inst. Educ. , vol.4 , pp. 10-12
    • Liu, Y.1
  • 13
    • 33645979632 scopus 로고    scopus 로고
    • The period function of reversible quadratic centers
    • Mardesic P, Marín D and Villadelprat J 2006 The period function of reversible quadratic centers J. Diff. Eqns 224 120-71
    • (2006) J. Diff. Eqns , vol.224 , Issue.1 , pp. 120-171
    • Mardesic, P.1    Marín, D.2    Villadelprat, J.3
  • 14
    • 84920547916 scopus 로고
    • The periods of the Volterra-Lotka system
    • Rothe F 1985 The periods of the Volterra-Lotka system J. Reine Angew. Math. 355 129-38
    • (1985) J. Reine Angew. Math. , vol.355 , pp. 129-138
    • Rothe, F.1
  • 15
    • 0002499881 scopus 로고
    • A class of Hamiltonian systems with increasing periods
    • Schaaf R 1985 A class of Hamiltonian systems with increasing periods J. Reine Angew. Math. 363 96-109
    • (1985) J. Reine Angew. Math. , vol.363 , pp. 96-109
    • Schaaf, R.1
  • 16
    • 42649144254 scopus 로고    scopus 로고
    • On the reversible quadratic centers with monotone period function
    • Villadelprat J 2007 On the reversible quadratic centers with monotone period function Proc. Am. Math. Soc. 135 2555-65
    • (2007) Proc. Am. Math. Soc. , vol.135 , Issue.8 , pp. 2555-2565
    • Villadelprat, J.1
  • 17
    • 0022661610 scopus 로고
    • The period in the Lotka-Volterra system is monotonic
    • Waldvogel J 1986 The period in the Lotka-Volterra system is monotonic J. Math. Anal. Appl. 114 178-84
    • (1986) J. Math. Anal. Appl. , vol.114 , Issue.1 , pp. 178-184
    • Waldvogel, J.1
  • 18
    • 38249037671 scopus 로고
    • 2(x - α)(x - 1) = 0 (0 ≤ α < 1)
    • 2(x - α)(x - 1) = 0 (0 ≤ α < 1) Nonlinear Anal. (TMA) 11 1029-50
    • (1987) Nonlinear Anal. (TMA) , vol.11 , Issue.9 , pp. 1029-1050
    • Wang, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.