메뉴 건너뛰기




Volumn 4, Issue 2, 2004, Pages 329-352

The period function for second-order quadratic odes is monotone

Author keywords

Period function; Second order quadratic odes

Indexed keywords


EID: 84896693429     PISSN: 15755460     EISSN: 16623592     Source Type: Journal    
DOI: 10.1007/BF02970864     Document Type: Article
Times cited : (25)

References (18)
  • 1
    • 0002294533 scopus 로고    scopus 로고
    • A survey of isochronous centers, Qual
    • J. Chavarriga and M. Sabatini. A survey of isochronous centers, Qual. Theory Dyn. Syst. 1 (1999), 1-70.
    • (1999) Theory Dyn. Syst , vol.1 , pp. 1-70
    • Chavarriga, J.1    Sabatini, M.2
  • 2
    • 0000643336 scopus 로고
    • Number of limit cycles of an autonomous second-order system
    • L.A. Cherkas. Number of limit cycles of an autonomous second-order system. Differ. Eq. 5 (1976), 666-668.
    • (1976) Differ. Eq , vol.5 , pp. 666-668
    • Cherkas, L.A.1
  • 3
    • 38249035274 scopus 로고
    • The monotonicity of the period function for planar Hamiltonian vector fields
    • C. Chicone. The monotonicity of the period function for planar Hamiltonian vector fields, J. Differential Equations 69 (1987), 310-321.
    • (1987) J. Differential Equations , vol.69 , pp. 310-321
    • Chicone, C.1
  • 4
    • 38249029275 scopus 로고
    • Geometric methods for two-point nonlinear boundary value problems
    • C. Chicone. Geometric methods for two-point nonlinear boundary value problems, J. Differential Equations 72 (1988), 360-407.
    • (1988) J. Differential Equations , vol.72 , pp. 360-407
    • Chicone, C.1
  • 6
    • 0000539993 scopus 로고
    • Bifurcations of critical periods for plane vector fields
    • C. Chicone and M. Jacobs. Bifurcations of critical periods for plane vector fields, Trans. Amer. Math. Soc. 312 (1989), 433-486.
    • (1989) Trans. Amer. Math. Soc , vol.312 , pp. 433-486
    • Chicone, C.1    Jacobs, M.2
  • 7
    • 84972541905 scopus 로고
    • The period function of a Hamiltonian quadratic system
    • W.A. Coppel and L. Gavrilov. The period function of a Hamiltonian quadratic system, Differential Integral Equations 6 (1993), 1357-1365.
    • (1993) Differential Integral Equations , vol.6 , pp. 1357-1365
    • Coppel, W.A.1    Gavrilov, L.2
  • 9
    • 0002487294 scopus 로고
    • Behavior of the period of solutions of certain plane autonomous systems near centers
    • W.S. Loud. Behavior of the period of solutions of certain plane autonomous systems near centers, Contributions to Differential Equations 3 (1964), 21-36.
    • (1964) Contributions to Differential Equations , vol.3 , pp. 21-36
    • Loud, W.S.1
  • 10
    • 0009367660 scopus 로고
    • Integrals of a general quadratic differential system in cases of a center
    • V. Lunkevich and K. Sibirskii. Integrals of a general quadratic differential system in cases of a center, Differential Equations 18 (1982), 563-568.
    • (1982) Differential Equations , vol.18 , pp. 563-568
    • Lunkevich, V.1    Sibirskii, K.2
  • 11
    • 0001639716 scopus 로고
    • A new method of investigating the isochronicity of a system of two differential equations
    • I.I. Pleshkan. A new method of investigating the isochronicity of a system of two differential equations, J. Differential Equations, 5 (1969) 796-802.
    • (1969) J. Differential Equations , vol.5 , pp. 796-802
    • Pleshkan, I.I.1
  • 12
    • 0031508104 scopus 로고    scopus 로고
    • Local bifurcations of critical periods in the reduced Kukles system
    • C. Rousseau and B. Toni. Local bifurcations of critical periods in the reduced Kukles system, Canad. J. Math. 49 (1997), 338-358.
    • (1997) Canad. J. Math , vol.49 , pp. 338-358
    • Rousseau, C.1    Toni, B.2
  • 13
    • 0003076010 scopus 로고    scopus 로고
    • Characterizing isochronous centres by Lie brackets
    • M. Sabatini. Characterizing isochronous centres by Lie brackets, Diff. Eq. Dyn. Sys., 5, 91-99 (1997).
    • (1997) Diff. Eq. Dyn. Sys , vol.5 , pp. 91-99
    • Sabatini, M.1
  • 14
    • 0001304970 scopus 로고
    • in "Bifurcations and periodic orbits of vector fields" (Montreal, PQ, 1992), Kluwer Acad. Publ., Dordrecht
    • D. Schlomiuk. Algebraic and geometric aspects of the theory of polynomial vector fields, in "Bifurcations and periodic orbits of vector fields" (Montreal, PQ, 1992), 429-467, Kluwer Acad. Publ., Dordrecht, 1993.
    • (1993) Algebraic and Geometric Aspects of the Theory of Polynomial Vector Fields , pp. 429-467
    • Schlomiuk, D.1
  • 15
    • 0001561370 scopus 로고
    • Potential forces which yield periodic motions of a fixed period
    • M. Urabe. Potential forces which yield periodic motions of a fixed period, J. Math. Mech. 10 (1961), 569-578.
    • (1961) J. Math. Mech , vol.10 , pp. 569-578
    • Urabe, M.1
  • 16
    • 0000353375 scopus 로고
    • Regularity properties of the period function near a centre of a planar vector field
    • M. Villarini. Regularity properties of the period function near a centre of a planar vector field, Nonlinear Analysis T.M.A. 19 (1992), 787-803.
    • (1992) Nonlinear Analysis T.M.A , vol.19 , pp. 787-803
    • Villarini, M.1
  • 17
    • 22644452165 scopus 로고    scopus 로고
    • Isochronicity and commutation of polynomial vector fields
    • (translation in Siberian Math. J. 40 (1999), 23-38.)
    • E. P. Volokitin and V. V. Ivanov. Isochronicity and commutation of polynomial vector fields, Sibirsk. Mat. Zh. 40 (1999), 30-48. (translation in Siberian Math. J. 40 (1999), 23-38.)
    • (1999) Sibirsk. Mat. Zh , vol.40 , pp. 30-48
    • Volokitin, E.P.1    Ivanov, V.V.2
  • 18
    • 0022661610 scopus 로고
    • The period in the Lotka-Volterra system is monotonic
    • J. Waldvogel. The period in the Lotka-Volterra system is monotonic, J. Math. Anal. Appl. 114 (1986), 178-184.
    • (1986) J. Math. Anal. Appl , vol.114 , pp. 178-184
    • Waldvogel, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.