메뉴 건너뛰기




Volumn 69, Issue 14, 2004, Pages

Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques

Author keywords

[No Author keywords available]

Indexed keywords

ALUMINUM; DEUTERIUM; HYDROGEN; SILICON DIOXIDE; TITANIUM;

EID: 42749107273     PISSN: 01631829     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevB.69.144209     Document Type: Article
Times cited : (236)

References (88)
  • 4
    • 2342538018 scopus 로고    scopus 로고
    • unpublished
    • G.I. Kerley, Phys. Earth Planet. Inter. 6, 78 (1972); G.I. Kerley (unpublished).
    • Kerley, G.I.1
  • 12
    • 0344926434 scopus 로고    scopus 로고
    • S.I. Belov, G.V. Boriskov, A.I. Bykov, R.I. Il'kaev, N.B. Luk'yanov, A.Ya. Matveev, O.L. Mikhailova, V.D. Selemir, G.V. Simakov, R.F. Trunin, I.P. Trusov, V.D. Urlin, V.E. Fortov, and A.N. Shuikin, Pis'ma Zh. Eksp. Teor. Fiz. 76, 508 (2002) [JETP Lett. 76, 433 (2002)].
    • (2002) JETP Lett. , vol.76 , pp. 433
  • 14
    • 0345547395 scopus 로고    scopus 로고
    • G.V. Boriskov, A.I. Bykov, R.I. Il'kaev, V.D. Selemir, G.V. Simakov, R.F. Trunin, V.D. Urlin, V.E. Fortov, and A.N. Shuikin, Dokl. Akad. Nauk 392, 755 (2003) [Dokl. Phys. 48, 553 (2003)].
    • (2003) Dokl. Phys. , vol.48 , pp. 553
  • 33
    • 0039748673 scopus 로고    scopus 로고
    • private communication
    • D.A. Young, High Press, Res. 16, 389 (2000); (private communication).
    • (2000) High Press, Res. , vol.16 , pp. 389
    • Young, D.A.1
  • 38
    • 33646649906 scopus 로고    scopus 로고
    • note
    • We acknowledge that others have used reshock and reverberating shock techniques (see, for example, Refs. 31-34,36). However, in this context, these studies represent the use of these techniques to attempt to discern the limiting shock compression in this high pressure regime.
  • 40
  • 41
    • 33646660262 scopus 로고    scopus 로고
    • note
    • In previous publications (Refs. 8,9) we compared our experimental results with an earlier, incomplete revision of the Sesame 72 model, referred therein as the Sesame model (also known as the Sesame 98 or Kerley 98 model). The current revision, referred to as the Kerley 03 model, consists of several improvements over the earlier revision. At the request of the author of these models (G.I. Kerley), we have done away with the earlier revision of the Sesame 72 model in favor of the more recent revision.
  • 48
    • 77955672630 scopus 로고    scopus 로고
    • edited by M.D. Furnish, N.N. Thadani, and Y. Horie (AIP Press, New York)
    • D.L. Hanson, J.R. Asay, C.A. Hall, M.D. Knudson, J.E. Bailey, K.J. Fleming, R.R. Johnston, B.F. Clark, M.A. Bernard, W.W. Anderson, G. Hassall, and S.D. Rothman, in Shock Compression of Condensed Matter-1999, edited by M.D. Furnish, L.C. Chhabildas, and R.S. Hixson (AIP Press, New York, 2000), p. 1175; D.L. Hanson, R.R. Johnston, M.D. Knudson, J.R. Asay, C.A. Hall, J.E. Bailey, and R.J. Hickman, in Shock Compression of Condensed Matter-2001, edited by M.D. Furnish, N.N. Thadani, and Y. Horie (AIP Press, New York, 2002), p. 1141.
    • (2002) Shock Compression of Condensed Matter-2001 , pp. 1141
    • Hanson, D.L.1    Johnston, R.R.2    Knudson, M.D.3    Asay, J.R.4    Hall, C.A.5    Bailey, J.E.6    Hickman, R.J.7
  • 51
    • 33646637298 scopus 로고    scopus 로고
    • note
    • For example, the linear correction (L2-L1)/L1 for Cu at 20 K is -0.324 (±0.010)% or -2.6 (±0.1) μm for an 800 μm thick reference spacer. The largest thermal expansion correction for any material was that for aluminum, -0.415 (±0.01)% at 20 K.
  • 52
    • 33646659102 scopus 로고    scopus 로고
    • note
    • The initial flyer thickness was nominally 800 μm. The ∼300 μm thickness refers to portion of the flyer at impact that remained unaffected by magnetic diffusion.
  • 54
    • 33646648788 scopus 로고    scopus 로고
    • note
    • 2 interface, appear to exhibit dissimilar rise times. This is a result of the different time resolutions for each of the diagnostics. In this case (Z824S), the time resolutions of the diagnostics were ∼1-2, ∼1, and ∼0.5 ns for the VISAR, FOSBO, and self-emission, respectively.
  • 59
    • 0022962937 scopus 로고    scopus 로고
    • unpublished
    • G.I. Kerley, Int. J. Impact Eng. 5, 441 (1987); G.I. Kerley (unpublished).
    • Kerley, G.I.1
  • 60
  • 61
    • 33646641864 scopus 로고    scopus 로고
    • note
    • The flyer plate experiences further quasi-isentropic compression and release, but since that process is reversible we only need consider the release from the shocked state. Also, the density, temperature, and particle velocity of the flyer at impact are not constants. Since the shock forms at the foot of the pulse and grows with distance, the density is lower and the temperature is higher towards the impact side of the flyer plate. However, given that we are only concerned with approximately 200-300 μm of the impact side of the flyer and the low rate of shock growth, the magnitude of the gradients are not significant, and can be ignored.
  • 62
    • 33646665413 scopus 로고    scopus 로고
    • note
    • 1, on average,
  • 63
    • 33646664470 scopus 로고    scopus 로고
    • note
    • 2 in addition to the reflected laser light. A portion of this self-emission signal was transmitted through the band-pass filter used in the FOSBO diagnostic, thus providing a measure of the self-emission in accordance with that obtained by the spectroscopy diagnostic.
  • 64
    • 33646669960 scopus 로고    scopus 로고
    • note
    • 2 (∼1-2 eV), and much greater than the shocked sapphire temperature (few tenths of an eV).
  • 66
    • 33646658272 scopus 로고    scopus 로고
    • note
    • The first and second shock in the anvil (sapphire or a-quartz) were at pressure levels of ∼300-400 GPa and ∼600-800 GPa, respectively, corresponding the shock temperatures of ∼0.5-0.75 eV and ∼1-2 eV, respectively. The observed increase in emission corresponded to the resulting temperature increase as the second shock overtook the first shock.
  • 67
    • 33646649357 scopus 로고    scopus 로고
    • note
    • 3.
  • 69
    • 0001363083 scopus 로고
    • B.L. Glushak, A.P. Zharkov, M.V. Zhernokletov, V.Ya. Ternovoi, A.S. Filimonov, and V.E. Fortov, Zh. Eksp. Teor. Fiz. 96, 1301 (1989) [Sov. Phys. JETP 69, 739 (1989)].
    • (1989) Sov. Phys. JETP , vol.69 , pp. 739
  • 70
    • 33646642580 scopus 로고    scopus 로고
    • note
    • 3).
  • 73
    • 33646670666 scopus 로고    scopus 로고
    • private communication
    • M.P. Desjarlais (private communication).
    • Desjarlais, M.P.1
  • 74
  • 76
    • 0006770881 scopus 로고
    • edited by S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross (AIP Press, New York)
    • N.C. Holmes, in High-Pressure Science and Technology-1993, edited by S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross (AIP Press, New York, 1994), p. 153.
    • (1994) High-Pressure Science and Technology-1993 , pp. 153
    • Holmes, N.C.1
  • 77
    • 33646661352 scopus 로고    scopus 로고
    • note
    • The power varies as a function of wavelength; at 400 and 600 nm the power is approximately 1.9 and 1.5, respectively.
  • 78
  • 86
    • 33646658706 scopus 로고
    • L.V. Al'tshuler, A.A. Bakanova, I.P. Dudoladov, E.A. Dynin, R.F. Trunin, and B.S. Chekin, Zh. Prikl. Mekh. Tekhn. Fiz. 2, 3 (1981) [J. Appl. Mech. Tech. Phys. 22, 145 (1981)].
    • (1981) J. Appl. Mech. Tech. Phys. , vol.22 , pp. 145
  • 88
    • 37249086325 scopus 로고
    • R.F. Trunin, N.V. Panov, and A.B. Medvedev, Pis'ma Zh. Eksp. Teor. Fiz. 62, 572 (1995) [JETP Lett. 62, 591 (1995)].
    • (1995) JETP Lett. , vol.62 , pp. 591


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.