-
1
-
-
0028079908
-
-
Y. Maeno et al., H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, Nature (London) 372, 532 (1994).
-
(1994)
Nature (London)
, vol.372
, pp. 532
-
-
Maeno, Y.1
Hashimoto, H.2
Yoshida, K.3
Nishizaki, S.4
Fujita, T.5
Bednorz, J.G.6
Lichtenberg, F.7
-
3
-
-
0032542297
-
-
K. Ishida et al., H. Mukada, Y. Kitaoka, K. Asayama, Z. Q. Mao, Y. Mori and Y. Maeno, Nature (London) 396, 658 (1998).
-
(1998)
Nature (London)
, vol.396
, pp. 658
-
-
Ishida, K.1
Mukada, H.2
Kitaoka, Y.3
Asayama, K.4
Mao, Z.Q.5
Mori, Y.6
Maeno, Y.7
-
17
-
-
0037037826
-
-
Y. Fuseya, Y. Onishi, H. Kohno, and K. Miyake, J. Phys.: Condens. Matter 14, L655 (2002).
-
(2002)
J. Phys.: Condens. Matter
, vol.14
-
-
Fuseya, Y.1
Onishi, Y.2
Kohno, H.3
Miyake, K.4
-
19
-
-
0032655529
-
-
S. Kagoshima, Y. Saso, M. Maesato, R. Kondo, and T. Hasegawa, Solid State Commun. 110, 479 (1999).
-
(1999)
Solid State Commun.
, vol.110
, pp. 479
-
-
Kagoshima, S.1
Saso, Y.2
Maesato, M.3
Kondo, R.4
Hasegawa, T.5
-
23
-
-
85038985602
-
-
K. Kuroki, M. Ogata, R. Arita, and H. Aoki, Phys. Rev. B 63, 060506 (2002).
-
(2002)
Phys. Rev. B
, vol.63
, pp. 060506
-
-
Kuroki, K.1
Ogata, M.2
Arita, R.3
Aoki, H.4
-
25
-
-
0037062366
-
-
I. Eremin, D. Manske, C. Joas, and K. H. Bennemann, Europhys. Lett. 58, 871 (2002).
-
(2002)
Europhys. Lett.
, vol.58
, pp. 871
-
-
Eremin, I.1
Manske, D.2
Joas, C.3
Bennemann, K.H.4
-
27
-
-
0034554468
-
-
T. Nomura and K. Yamada, J. Phys. Soc. Jpn. 69, 3678 (2002); T. Nomura and K. Yamada, J. Phys. Soc. Jpn. 69, 404 (2002).
-
(2002)
J. Phys. Soc. Jpn.
, vol.69
, pp. 3678
-
-
Nomura, T.1
Yamada, K.2
-
28
-
-
0036246912
-
-
T. Nomura and K. Yamada, J. Phys. Soc. Jpn. 69, 3678 (2002); T. Nomura and K. Yamada, J. Phys. Soc. Jpn. 69, 404 (2002).
-
(2002)
J. Phys. Soc. Jpn.
, vol.69
, pp. 404
-
-
Nomura, T.1
Yamada, K.2
-
31
-
-
0035508996
-
-
C. Honerkamp and M. Salmhofer, Phys. Rev. Lett. 87, 187004 (2001); C. Honerkamp and M. Salmhofer, Phys. Rev. B 64, 184516 (2001).
-
(2001)
Phys. Rev. B
, vol.64
, pp. 184516
-
-
Honerkamp, C.1
Salmhofer, M.2
-
32
-
-
3342914308
-
-
N. E. Bickers, D. J. Scalapino, and S. R. White, Phys. Rev. Lett. 62, 961 (1989); G. Esirgen and N. E. Bickers, Phys. Rev. B 55, 2122 (1997).
-
(1989)
Phys. Rev. Lett.
, vol.62
, pp. 961
-
-
Bickers, N.E.1
Scalapino, D.J.2
White, S.R.3
-
33
-
-
0001446007
-
-
N. E. Bickers, D. J. Scalapino, and S. R. White, Phys. Rev. Lett. 62, 961 (1989); G. Esirgen and N. E. Bickers, Phys. Rev. B 55, 2122 (1997).
-
(1997)
Phys. Rev. B
, vol.55
, pp. 2122
-
-
Esirgen, G.1
Bickers, N.E.2
-
34
-
-
0000396105
-
-
R. Arita, K. Kuroki, and H. Aoki, Phys. Rev. B 60, 14585 (1999); R. Arita, K. Kuroki, and H. Aoki, J. Phys. Soc. Jpn. 69, 1181 (2000).
-
(1999)
Phys. Rev. B
, vol.60
, pp. 14585
-
-
Arita, R.1
Kuroki, K.2
Aoki, H.3
-
35
-
-
0034371856
-
-
R. Arita, K. Kuroki, and H. Aoki, Phys. Rev. B 60, 14585 (1999); R. Arita, K. Kuroki, and H. Aoki, J. Phys. Soc. Jpn. 69, 1181 (2000).
-
(2000)
J. Phys. Soc. Jpn.
, vol.69
, pp. 1181
-
-
Arita, R.1
Kuroki, K.2
Aoki, H.3
-
48
-
-
33646641677
-
-
note
-
Due to the finite size effects mentioned here, we cannot carry out a reliable finite size scaling analysis because the parameter values for which the open shell condition is satisfied differs according to the system size. Nevertheless, as mentioned in the Introduction, our study has been motivated by the controversy between existing theories concerning the most favorable pairing symmetry, so that the purpose here is not to establish the presence of off-diagonal long range order in the thermodynamic limit, but only to determine which one the pairing symmetries is most favored (if superconductivity actually occurs), and the present analysis suffices for this purpose.
-
-
-
-
49
-
-
33646648731
-
-
note
-
F SDW configuration, where the spin density correlation 〈ni↑ni+2↓〉 is large. It is the long range part of the pairing correlation that provides the true measure for the pairing interaction, so we focus only on this part.
-
-
-
-
53
-
-
33646650196
-
-
note
-
c in the triplet channel is not obtained in the FLEX calculation, the eigenvalue of the Eliashberg equation is larger in the triplet channel than in the singlet channel.
-
-
-
|