-
2
-
-
0000730838
-
Symmetry breaking bifurcation and first period-doubling following a Hopf bifurcation in a three-dimensional system
-
3
-
Belhaq, M., Houssni, M.: Symmetry breaking bifurcation and first period-doubling following a Hopf bifurcation in a three-dimensional system. Mech. Res. Commun. 22(3), 221-231 (1995)
-
(1995)
Mech. Res. Commun.
, vol.22
, pp. 221-231
-
-
Belhaq, M.1
Houssni, M.2
-
3
-
-
0040187670
-
Analytical prediction of the two first period-doublings in a three-dimensional system
-
Belhaq, M., Houssni, M., Freire, E., Rodriguez-Luis, A.J.: Analytical prediction of the two first period-doublings in a three-dimensional system. Int. J. Bifur. Chaos 10, 1497-1508 (2000)
-
(2000)
Int. J. Bifur. Chaos
, vol.10
, pp. 1497-1508
-
-
Belhaq, M.1
Houssni, M.2
Freire, E.3
Rodriguez-Luis, A.J.4
-
4
-
-
0035309916
-
Feigenbaum scenario excited by thin plate dynamics
-
Awrejcewicz, J., Krysko, V.A.: Feigenbaum scenario excited by thin plate dynamics. Nonlinear Dyn. 24, 373-398 (2001)
-
(2001)
Nonlinear Dyn.
, vol.24
, pp. 373-398
-
-
Awrejcewicz, J.1
Krysko, V.A.2
-
5
-
-
12444303303
-
Chaos and route to chaos in coupled Duffing oscillators with multiple degrees of freedom
-
Musielak, D.E., Musielak, Z.E., Benner, J.W.: Chaos and route to chaos in coupled Duffing oscillators with multiple degrees of freedom. Chaos Solitons Fractals 24, 907-922 (2005)
-
(2005)
Chaos Solitons Fractals
, vol.24
, pp. 907-922
-
-
Musielak, D.E.1
Musielak, Z.E.2
Benner, J.W.3
-
6
-
-
0037770579
-
Bifurcation structure of two coupled periodically driven double-well Duffing oscillators
-
Kenfack, A.: Bifurcation structure of two coupled periodically driven double-well Duffing oscillators. Chaos Solitons Fractals 15, 205-218 (2003)
-
(2003)
Chaos Solitons Fractals
, vol.15
, pp. 205-218
-
-
Kenfack, A.1
-
7
-
-
0000347426
-
Chaotic response of a harmonically excited mass on an isolator with nonlinear stiffness and damping characteristics
-
3
-
Ravindra, B., Mallik, A.K.: Chaotic response of a harmonically excited mass on an isolator with nonlinear stiffness and damping characteristics. J. Sound Vib. 182(3), 345-353 (1995)
-
(1995)
J. Sound Vib.
, vol.182
, pp. 345-353
-
-
Ravindra, B.1
Mallik, A.K.2
-
8
-
-
0032160974
-
Bifurcations and transitions to chaos in an inverted pendulum
-
3
-
Kim, S.Y., Hu, B.: Bifurcations and transitions to chaos in an inverted pendulum. Phys. Rev. E 58(3), 3028-3035 (1998)
-
(1998)
Phys. Rev. e
, vol.58
, pp. 3028-3035
-
-
Kim, S.Y.1
Hu, B.2
-
9
-
-
0036015436
-
Classification of bifurcation and routes to chaos in a variant of Murali-Lakshmanan-Chua circuit
-
4
-
Thamilmaran, K., Lakshmanan, M.: Classification of bifurcation and routes to chaos in a variant of Murali-Lakshmanan-Chua circuit. Int. J. Bifurc. Chaos 12(4), 783-813 (2002)
-
(2002)
Int. J. Bifurc. Chaos
, vol.12
, pp. 783-813
-
-
Thamilmaran, K.1
Lakshmanan, M.2
-
10
-
-
0025702692
-
Bifurcation portrait of the human vocal cord oscillations
-
1
-
Awrejcewicz, J.: Bifurcation portrait of the human vocal cord oscillations. J. Sound Vib. 136(1), 151-156 (1990)
-
(1990)
J. Sound Vib.
, vol.136
, pp. 151-156
-
-
Awrejcewicz, J.1
-
11
-
-
14844328289
-
Numerical analysis of the oscillation of human vocal cords
-
Awrejcewicz, J.: Numerical analysis of the oscillation of human vocal cords. Nonlinear Dyn. 2, 35-52 (1991)
-
(1991)
Nonlinear Dyn.
, vol.2
, pp. 35-52
-
-
Awrejcewicz, J.1
-
12
-
-
0025662838
-
Dynamics of a self-excited stick-slip oscillator with two degree of freedom Part I. Investigation of equilibria
-
4
-
Awrejcewicz, J., Delfs, J.: Dynamics of a self-excited stick-slip oscillator with two degree of freedom Part I. Investigation of equilibria. Eur. J. Mech. A/Solid 9(4), 269-282 (1990)
-
(1990)
Eur. J. Mech. A/Solid
, vol.9
, pp. 269-282
-
-
Awrejcewicz, J.1
Delfs, J.2
-
13
-
-
0025664860
-
Dynamics of a self-excited stick-slip oscillator with two degree of freedom Part II. Slip-stick, slip-slip, stick-slip, periodic and chaotic orbits
-
5
-
Awrejcewicz, J., Delfs, J.: Dynamics of a self-excited stick-slip oscillator with two degree of freedom Part II. Slip-stick, slip-slip, stick-slip, periodic and chaotic orbits. Eur. J. Mech. A/Solid 9(5), 397-418 (1990)
-
(1990)
Eur. J. Mech. A/Solid
, vol.9
, pp. 397-418
-
-
Awrejcewicz, J.1
Delfs, J.2
-
14
-
-
0024680396
-
Construction of the chaotic regions
-
3
-
Leung, A.Y.T., Fung, T.C.: Construction of the chaotic regions. J. Sound Vib. 131(3), 445-455 (1989)
-
(1989)
J. Sound Vib.
, vol.131
, pp. 445-455
-
-
Leung, A.Y.T.1
Fung, T.C.2
-
15
-
-
0012858344
-
Bifurcations and chaotic motions in a rate gyro with a sinusoidal velocity about the spin axis
-
2
-
Ge, Z.M., Chen, H.H.: Bifurcations and chaotic motions in a rate gyro with a sinusoidal velocity about the spin axis. J. Sound Vib. 200(2), 121-137 (1997)
-
(1997)
J. Sound Vib.
, vol.200
, pp. 121-137
-
-
Ge, Z.M.1
Chen, H.H.2
-
16
-
-
0037698267
-
Bifurcation and chaos of a harmonically excited oscillator with both stiffness and viscous damping piecewise nonlinearity by incremental harmonic balance method
-
Xu, L., Lu, M.W., Cao, Q.: Bifurcation and chaos of a harmonically excited oscillator with both stiffness and viscous damping piecewise nonlinearity by incremental harmonic balance method. J. Sound Vib. 264, 873-882 (2003)
-
(2003)
J. Sound Vib.
, vol.264
, pp. 873-882
-
-
Xu, L.1
Lu, M.W.2
Cao, Q.3
-
17
-
-
0036502125
-
Periodic response and chaos in nonlinear systems with parametric excitation and time delay
-
Raghothama, A., Narayanan, S.: periodic response and chaos in nonlinear systems with parametric excitation and time delay. Nonlinear Dyn. 27, 341-365 (2002)
-
(2002)
Nonlinear Dyn.
, vol.27
, pp. 341-365
-
-
Raghothama, A.1
Narayanan, S.2
-
18
-
-
0034217062
-
Bifurcation and chaos in escape equation model by incremental harmonic balancing
-
Raghothama, A., Narayanan, S.: Bifurcation and chaos in escape equation model by incremental harmonic balancing. Chaos Solitons Fractals 11, 1349-1363 (2000)
-
(2000)
Chaos Solitons Fractals
, vol.11
, pp. 1349-1363
-
-
Raghothama, A.1
Narayanan, S.2
-
19
-
-
0034019858
-
Bifurcation and chaos of an articulated loading platform with piecewise nonlinear stiffness using the incremental harmonic balance method
-
Raghothama, A., Narayanan, S.: Bifurcation and chaos of an articulated loading platform with piecewise nonlinear stiffness using the incremental harmonic balance method. Ocean Eng., 27, 1087-1107 (2000)
-
(2000)
Ocean Eng.
, vol.27
, pp. 1087-1107
-
-
Raghothama, A.1
Narayanan, S.2
-
20
-
-
0001282865
-
Evidence for universal chaotic behavior of a driven nonlinear oscillator
-
11
-
Testa, J., Perez, J., Jeffries, G.: Evidence for universal chaotic behavior of a driven nonlinear oscillator. Phys. Rev. Lett. 48(11), 714-720 (1982)
-
(1982)
Phys. Rev. Lett.
, vol.48
, pp. 714-720
-
-
Testa, J.1
Perez, J.2
Jeffries, G.3
-
21
-
-
0019668332
-
Amplitude incremental variational principle for nonlinear vibration of elastic systems
-
Lau, S.L., Cheung, Y.K.: Amplitude incremental variational principle for nonlinear vibration of elastic systems. ASME J. Appl. Mech. 48, 959-964 (1981)
-
(1981)
ASME J. Appl. Mech.
, vol.48
, pp. 959-964
-
-
Lau, S.L.1
Cheung, Y.K.2
-
23
-
-
0001315863
-
Application of the incremental harmonic balance method to cubic nonlinearity systems
-
Cheung, Y.K., Chen, S.H., Lau, S.L.: Application of the incremental harmonic balance method to cubic nonlinearity systems. J. Sound Vib. 140, 273-286 (1990)
-
(1990)
J. Sound Vib.
, vol.140
, pp. 273-286
-
-
Cheung, Y.K.1
Chen, S.H.2
Lau, S.L.3
-
24
-
-
0000905408
-
Chaotic oscillation in mechanical systems
-
Dowell, E.H.: Chaotic oscillation in mechanical systems. Comput. Mech. 3, 199-216 (1988)
-
(1988)
Comput. Mech.
, vol.3
, pp. 199-216
-
-
Dowell, E.H.1
-
25
-
-
0001816458
-
Quantitative universality for a class of nonlinear transformations
-
Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19, 25-52 (1978)
-
(1978)
J. Stat. Phys.
, vol.19
, pp. 25-52
-
-
Feigenbaum, M.J.1
-
26
-
-
0032050074
-
Low-dimensional chaotic response of axially accelerating continuum in the supercritical regime
-
Ravindra, B., Zhu, W.D.: Low-dimensional chaotic response of axially accelerating continuum in the supercritical regime. Arch. Appl. Mech. 68, 195-205 (1998)
-
(1998)
Arch. Appl. Mech.
, vol.68
, pp. 195-205
-
-
Ravindra, B.1
Zhu, W.D.2
-
27
-
-
0017441527
-
Efficient numerical treatment of periodic systems with application to stability problems
-
Friedmann, P., Hammond, C.E.: Efficient numerical treatment of periodic systems with application to stability problems. Int. J. Numer. Method Eng. 11, 1117-1136 (1977)
-
(1977)
Int. J. Numer. Method Eng.
, vol.11
, pp. 1117-1136
-
-
Friedmann, P.1
Hammond, C.E.2
|