메뉴 건너뛰기




Volumn 58, Issue 3, 1998, Pages 3028-3035

Bifurcations and transitions to chaos in an inverted pendulum

Author keywords

[No Author keywords available]

Indexed keywords

BIFURCATION (MATHEMATICS); CHAOS THEORY; DAMPING; LYAPUNOV METHODS; OSCILLATIONS; SYSTEM STABILITY;

EID: 0032160974     PISSN: 1063651X     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevE.58.3028     Document Type: Article
Times cited : (32)

References (25)
  • 3
    • 85036403053 scopus 로고    scopus 로고
    • H. C. Corben and P. Stehle, Classical Mechanics, 2nd ed. (Wiley, New York, 1960), p. 67
    • H. C. Corben and P. Stehle, Classical Mechanics, 2nd ed. (Wiley, New York, 1960), p. 67.
  • 5
    • 85036329283 scopus 로고    scopus 로고
    • J. J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems (Interscience, New York, 1966), p. 189
    • J. J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems (Interscience, New York, 1966), p. 189.
  • 15
    • 85036286496 scopus 로고    scopus 로고
    • The sign in front of [Formula Presented] in Eq. (3) is different for the normal and inverted states. For the case of the normal state the sign is positive, while it is minus for the case of the inverted state. The sign is important, because it affects the stability
    • The sign in front of Ω2 in Eq. (3) is different for the normal and inverted states. For the case of the normal state the sign is positive, while it is minus for the case of the inverted state. The sign is important, because it affects the stability.
  • 24
    • 85036283897 scopus 로고    scopus 로고
    • R. S. MacKay, Ph.D. thesis, Princeton University, 1982. See Eqs. (3.1.2.12) and (3.1.2.13)
    • R. S. MacKay, Ph.D. thesis, Princeton University, 1982. See Eqs. (3.1.2.12) and (3.1.2.13).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.