-
1
-
-
0001646576
-
Pruning simply typed λ -terms
-
Berardi S. Pruning simply typed. λ -terms J. Logic Comput. 6:1996;663-681.
-
(1996)
J. Logic Comput.
, vol.6
, pp. 663-681
-
-
Berardi, S.1
-
3
-
-
0035252984
-
The Warshall algorithm and Dickson's lemma: Two examples of realistic program extraction
-
Berger U., Schwichtenberg H., Monika S. The Warshall Algorithm and Dickson's Lemma. two examples of realistic program extraction J. Automat. Reason. 26:2001.
-
(2001)
J. Automat. Reason.
, vol.26
-
-
Berger, U.1
Schwichtenberg, H.2
Monika, S.3
-
5
-
-
0013548862
-
A semantics of evidence for classical arithmetic
-
Coquand T. A semantics of evidence for classical arithmetic. J. Symbolic Logic. 60:1995;325-337.
-
(1995)
J. Symbolic Logic
, vol.60
, pp. 325-337
-
-
Coquand, T.1
-
8
-
-
0022955294
-
Control operators, the SECD machine and the λ -calculus
-
M. Felleisen, D. Friedman, Control operators, the SECD machine and the λ -calculus, Formal description of Programming Concepts, III, 1986, pp. 131-141.
-
(1986)
Formal Description of Programming Concepts
, vol.3
, pp. 131-141
-
-
Felleisen, M.1
Friedman, D.2
-
11
-
-
0028445969
-
A general storage theorem for integers in call-by-name lambda-calculus
-
Krivine J.-L. A general storage theorem for integers in call-by-name lambda-calculus. Theor. Comput. Sci. 129:1994;79-94.
-
(1994)
Theor. Comput. Sci.
, vol.129
, pp. 79-94
-
-
Krivine, J.-L.1
-
12
-
-
4243128737
-
Classical logic, storage operators and second-order lambda-calculus
-
Krivine J.-L. Classical logic, storage operators and second-order lambda-calculus. Ann. Pure Appl. Logic. 68:1994;225-260.
-
(1994)
Ann. Pure Appl. Logic
, vol.68
, pp. 225-260
-
-
Krivine, J.-L.1
-
13
-
-
0142124726
-
Dependent choice, 'quote' and the clock
-
Krivine J.-L. Dependent choice, 'quote' and the clock. Theor. Comput. Sci. 308:2003;259-276.
-
(2003)
Theor. Comput. Sci.
, vol.308
, pp. 259-276
-
-
Krivine, J.-L.1
-
14
-
-
0034382036
-
Mixed logic and storage operators
-
Nour K. Mixed logic and storage operators. Arch. Math. Logic. 39:2000;261-280.
-
(2000)
Arch. Math. Logic
, vol.39
, pp. 261-280
-
-
Nour, K.1
-
15
-
-
84944098890
-
λ μ -Calculus an algorithmic interpretation of classical natural deduction
-
Lecture Notes in Computer Science
-
M. Parigot, λ μ -calculus an algorithmic interpretation of classical natural deduction, in: Proc. of Logic and Automatic Reasoning, Lecture Notes in Computer Science, vol. 624, 1991.
-
(1991)
Proc. of Logic and Automatic Reasoning
, vol.624
-
-
Parigot, M.1
-
16
-
-
0027225012
-
Strong normalization for second order classical natural deduction
-
M. Parigot, Strong normalization for second order classical natural deduction, Logic Comput. Sci. (1993) pp. 39-46.
-
(1993)
Logic Comput. Sci.
, pp. 39-46
-
-
Parigot, M.1
-
17
-
-
0043027811
-
-
software available on the Internet
-
C. Raffalli, the phox proof assistant version 0.8. software available on the Internet: http://www.lama.univ-savoie.fr/~RAFFALLI/phox.html, 2002.
-
(2002)
The Phox Proof Assistant Version 0.8
-
-
Raffalli, C.1
|