-
1
-
-
0032222043
-
On the computational content of the axiom of choice
-
Berardi S., Bezem M., Coquand T. On the computational content of the axiom of choice. J. Symbolic Logic. 63:1998;600-622.
-
(1998)
J. Symbolic Logic
, vol.63
, pp. 600-622
-
-
Berardi, S.1
Bezem, M.2
Coquand, T.3
-
3
-
-
0013548862
-
A semantics of evidence for classical arithmetic
-
Coquand T. A semantics of evidence for classical arithmetic. J. Symbolic Logic. 60:1995;325-337.
-
(1995)
J. Symbolic Logic
, vol.60
, pp. 325-337
-
-
Coquand, T.1
-
4
-
-
0002507810
-
Une extension de l'interprétation de Gödel à l'analyse
-
North-Holland, Amsterdam
-
J.-Y. Girard, Une extension de l'interprétation de Gödel à l'analyse, in: Proc. Second Scand. Logic Symp. North-Holland, Amsterdam, 1971, pp. 63-92.
-
(1971)
Proc. Second Scand. Logic Symp.
, pp. 63-92
-
-
Girard, J.-Y.1
-
6
-
-
0033262169
-
On the no-counter-example interpretation
-
Kohlenbach U. On the no-counter-example interpretation. J. Symbolic Logic. 64:1999;1491-1511.
-
(1999)
J. Symbolic Logic
, vol.64
, pp. 1491-1511
-
-
Kohlenbach, U.1
-
7
-
-
0001526427
-
On the interpretation of non-finitist proofs, part I
-
Kreisel G. On the interpretation of non-finitist proofs, part I. J. Symbolic Logic. 16:1951;241-267.
-
(1951)
J. Symbolic Logic
, vol.16
, pp. 241-267
-
-
Kreisel, G.1
-
8
-
-
0001818114
-
On the interpretation of non-finitist proofs, part II: Interpretation of number theory, applications
-
Kreisel G. On the interpretation of non-finitist proofs, part II. interpretation of number theory, applications J. Symbolic Logic. 17:1952;43-58.
-
(1952)
J. Symbolic Logic
, vol.17
, pp. 43-58
-
-
Kreisel, G.1
-
9
-
-
0142075144
-
Mathematical significance of consistency proofs
-
Kreisel G. Mathematical significance of consistency proofs. J. Symbolic Logic. 23:1958;155-182.
-
(1958)
J. Symbolic Logic
, vol.23
, pp. 155-182
-
-
Kreisel, G.1
-
10
-
-
0028445969
-
A general storage theorem for integers in call-by-name λ -calculus
-
Krivine J.-L. A general storage theorem for integers in call-by-name. λ -calculus Theoret. Comput. Sci. 129:1994;79-94.
-
(1994)
Theoret. Comput. Sci.
, vol.129
, pp. 79-94
-
-
Krivine, J.-L.1
-
11
-
-
0035645637
-
Typed lambda-calculus in classical Zermelo-Fraenkel set theory
-
Krivine J.-L. Typed lambda-calculus in classical Zermelo-Fraenkel set theory. Arch. Math. Logic. 40(3):2001;189-205.
-
(2001)
Arch. Math. Logic
, vol.40
, Issue.3
, pp. 189-205
-
-
Krivine, J.-L.1
-
12
-
-
84944098890
-
λμ -calculus: An algorithmic interpretation of classical natural deduction
-
Proc. Logic Programming and Automatic Reasoning, St. Petersbourg
-
M. Parigot, λμ -calculus: an algorithmic interpretation of classical natural deduction, Proc. Logic Programming and Automatic Reasoning, St. Petersbourg, Lecture Notes in Computer Science, Vol. 624, 1992, pp. 190-201.
-
(1992)
Lecture Notes in Computer Science
, vol.624
, pp. 190-201
-
-
Parigot, M.1
|